
www.manaraa.com

%
An Information Retrieval Tool for

Reverse Software Engineering

Christos Magdalinos
School of Computer Science
McGill University. Montreal

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements for the degree of M.Sc. in Computer Science.

Copyright © Christos Magdalinos 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 * 1 National Library
of Canada

Acquisitions and
Bibliographic Services Branch

39S Wellington Street
Ottawa. Ontario
K1A0N4

Bibiiotheque Rationale
du Canada

Direction d e s acquisitions et
d es serv ices bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A0N4 you* W'cVt* rr*' r̂rf\:r

Ou* **<+ Kofty

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L’auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibiiotheque
nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur conserve la propriete du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-612-19834-0

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Non*, ’UNCsftfVultoCS
Dissertation Abstracts International is arranged by brood, general subject categories Please select the one subiect winch most
nearly describes the content of your dissertation. Enter the corresponding four-diqit code in the spaces provided

V ' v - y f s . O U M I
SUBJECT TERM SUBJECT COO€

Subject Categories

THI HUMANITIES AND SOCIAL SCIENCES
CONMUMCADONS AND THE ARTS
Architecture................................0729
Alt History..................................0377
Gnemo0900
D a n a .. 0378
Fin* Arts.................................... 0357
Information Science.................... 0723
Journalism.................................. 0391
lira iy Science.......................... 0399
Mot* Cun vnunicntion*................0708
Music... 0413
Speech Communication............ 0459
m a la r0465

BUCATW N
General....................................0015
Administration.......................... 0514
Adult end Continuin g 0516
Agricultural -0517
Art.. 0273
Bilingual and Multicultural........0282
Businas....................................0688
Community GoBege...................0275
Curriculum and Instruction 0727
Eariy Childhood........................0518
Bementory............................... 0524
Finance.....................................0277
Guidance and Counseling 0S19
Health..........................- 0680
Higher...............0745
History o f 0520
Heme Economics..................... 0278
Industrial.................................. 0521
longuogo and literature...........0279
Mathematics.............................0280
Music......................- 0522
Philosophy o f............................0998
Physical....................................0523

Psychology.................................0525
Reoding 0535
Religious.................................... 0527
Sciences 0714
Secondary.................................. 0533
Social Sciences.......................... 0534
Sociology o f0340
Special....................................... 0529
Teacher Training.........................0530
Technology.................................0710
Tests ona Measurements.............0288
Vocational..................................0747

LANGUAGE LITERATURE AND
UNGWSTKS

............................... 0679
Ancient................................0289
linguistics............................0290
Modem...............................0291

literature
General...............................0401
Classical............................. 0294
Comparative....................... 0295
Medieval............................ 0297
Modem.............................. 0298
African............................... 0316
American............................ 0591
Asian................................. 0305
Canodian (English)............. 0352
Canadian (Fronds)............. 0355
English............................... 0593
Germanic...........................0311
Latin American................... 0312
Middle Eastern................... 0315
Romance............................0313
Slavic ond East European 0314

!
i - 0 >

PHILOSOPHY, RELIGION AND
THE010GY /
Philosophy /
RptaiOrt f r —. .. * ' ■i-

u w d

, Q31«
H»*to<yol . 03?0
Philosophy ol 032*

Theology............................ 04*9

SOCIAL SCIENCES
AiwfkoflSmdes
Aofhro

*■
Mriujxhrtll

O F ft^yan
1 O*c<*on»o

Ard
0323

0324
CwhMrpl..................................0326
P h y ic d 0327

Bwineu ASmimVroiiOrt
General0310
Accounting0272
Bonking..................................0770
Monogement 0454
MorW ing.............................. 0338

Conodon Sto& n 0385
Economic*

G c tw d 0501
Aghcuhurol 0503
Commerce-Bviineis.............. 0505
Rnonce........................... ...0508
Hiawy..................................0509
la b o r 0510
Theory.................................. 0511

Folklore...0358
Geography...................................0366
Gerontology.................................0351
Hiitory

GffwrcJ..................................0578

lotm
Middle Eo*rm
United fitote*

HiVory ol $c*ence
low
Polihcol Sc*cr<r

Gm^rol
Intemaftonol low and

Relohons.............
Public Admiru*trpt»on

Recreation................................
Soool Work
Sociology

General...........
Criminology and Penology .
Demography...........
Ethnic ona Roriol Studies
Individual ond Fonvly

Studies..........................
Industrial an d lab o r

Relotions..........
Public and Social Welfare
Social Structure and

Theory and Method s
Transportation............
Urban and Regtonol Plonnmg .
Women's Studies...................

0 > > '
O.Mlt
0582
032H
0331
0337
0334
03J?>
0336
0333
0337
0586
03V8

0615

0616
0617
0814
0452

0626
0627
0938
0631

0628

0629
0630

0700
0344
.0709
0999
0453

THE SCIENCES AND ENGINEERING
M M O G K A L saaas
Agriculture

General................................0473
Agronomy 0285
Animcf Culture and

Nutrition.............— 0475
Animal Pathology0476
Food Science ond

Technology .._______0359
Eorastryand'w ij if* 0478
Plont Culture ——....... 0479
Plant Pathology—0480
Plant Physiology— 0817
Ronoe Management______ 0777
Wood Technology________0746

 0306
________0287
________0308
________0309

Anatomy__
Bioslatisiics.
Botany------
Cell.
Ecology-----
Entomology.
G enetics.....
limnology.—. .
Microbiology ._
MofoedarT

.0379
 0329
 0353
 0369

.0793
—.0410
— 0307

Neuroscience ________ .0317
Oceanography..—.—......... 0416
Physiology ___ 0433
Radiation.______________ 0821
Veterinary Scenes.— — 0778
Zoology...----------------------0472

Biophysics
Cfooeral_______________ 0786
Medical________________0760

O R TH SCIENCES
Biogoochemtstry..........................0425
Geochemistry.................. 0996

Geodesy.................................... 0370
Geology..................................... 0372
Geophysics.................. 0373
“ ' ' .0388

..0411
Fhrdroldgy ...
M ineralogy..
Poleobotony 0345
Poleoecology.............................. 0426
Paleontology............... 0418
Weoioology..............................0985
Potynology.................................0427
Physical Geography0368
Physical Oceanography.............0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences..............0768
Heolth Sciences

General0566
Audiolcgy.................. 0300
Chemotherapy_______..... 0992
Dentistry...............................0567
Education............... 0350
Hospital Management.. 0769
Human Ofvdopfiwd **•*»***»** 0758
Immunology..— —— .0982
Medicine ond Suraery — .0564
“ • " “ .0347
Nursing ——________ 0569
Nutrition ____ 0570
Obstetrics and Gynecology ..0380
Occupational Heolth and

Therapy - 0354
Ophthalmology 0381
fSthologyT—f.................— 0571
Phormocology......._____—0419
Pharmacy __________0572
Physicol Therapy...............—0382
Public Heohh........................ 0573
Rodiology.............................0574
Recreation............................0575

Speech Pathology 0460
Toxicology........................... 0383

Home Economic s 0386

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General................................0485
Agricultural.......................... 0749
Ancdyticol.............................0486
Biochemistry........................ 0487
Inorganic..............................0488
Nudeor................................0738
Organic.......................... ,.—0490
Pharmoceuticol..................... 0491

...................... ...0494
..........................0495
......................... 0754

Mothemotia...............................0405
Physics

General................................0605
Acoustics..............................0986
Astronomy and

Astrophysics 0606
Atmospheric Science.............0608
Atomic 0748
Oeclronics andElectricity 0607
CWNAlMy rQdioti one

Hid) Energy...................... 0798
fluiaand Plasma..................0759
Molecular0609
Nudeor 0610
Optics —................. 0752
Radiation —.......... 0756
Solid State_____________ 0611

Statistics 0463
AppUed Sciences
Applied Mechonics.................... 0346
Computer Science...................... 0984

Engineering
Genera................................0537
Actcnpoce........................... 0538
Agricultural.......................... 0539
Automotive.......................... 0540
Biomedicol........................... 0541
Chemieol............................. 0542
Civil..................................... 0543
Electronics ond Electrieol 0544
Heal ond Thermodynamics ...0348
Hydraulic..............................0545
Industrial0546
Morin*0547
Moterials Science.................0794
Mechanical...........................0548
MetoKurgy............................0743
Mining CfSl
Nudeor................................ 0552
Poctoging..................... 0549
Petroleum0765
Sanitary and Municipal 0554
System Science.....................0790

Geottchnolqgy...............................0428
Operations Research — 0796
Plastic* Technology.................... 0795
Texlsl* Technology 0994

PSYCHOLOGY
General..................................... 0621
Behavioral.................................. 0384
O nicol...................................... 0622
Developmental............................0620
Experimental..............................0623
Indudrial.................................... 0624
Personality..................................0625
Physiological..............................0989
Psychobiology............................0349
Psychometrics.............................0632
Social.. 0451

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

McGill University
FACULTY OF GRADUATE STUDIES AND RESEARCH

\-*i O h * p- 7*) p\ y?Vj

DEPARTMENT: C o w\ p ^ W t S c >*vau: DEGREE SOUGHT:

TITLE OF THESIS: Kv' ic< KV>5f\ vv.':-N vC \ f \ vciQ \ c cQ c KrvtffSJU. S ;

\S .
O VJ

SHORT TITLE OF THESIS:

(70 chars, or less! *
i \ r . '

^ i A r > —

Authorization is hereby given to McGill University to make Permanent Address of Author
this thesis available to readers in the McGill University Library
or other library, either in its present form or in reproduction.
The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or
otherwise be reproduced without the author’s written
permission. The authorization is to have effect on the date
given below unless a deferral of one year is requested by the
author on submitting the thesis.

<«.•: " i$36

A .C rC V t . v P c v

Signature, of Author Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

Information retrieval in large data spaces using formal, structure oriented patterns of

features has many possible applications. We developed and studied a system that can

be used to localize code segments in a program. The system is built using a generic

and extensible object oriented framework and uses the Viterbi dynamic programming

algorithm on simple Markov models to calculate a similarity measure between an

abstractly described code segment and a possible instantiation of it in the program.

The resulting system can be incorporated in a larger cooperative environment of

CASE tools and can be used during the design recovery process to perform concept

localization.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Resum e

Le re trait. d' information dans dc grands cspaccs dc donnccs utilisant des inodeles de

traits formols et oricntes structure a beacoup d’ applications possibles. Nous avons

dovelope et ctudie un syst.emc qui peut ctrc utilise pour localiser des segments dc

code dans un programme. Lc systcme cst construit utilisant un structure gcncriquc

et extensible oricnte-objet. et utilise Y algorithm de programmation dynamique de

Viterbi sur de simples modeles de Markov pour calculer une mesurc de similarity

cntrc un segment de code dccrit abstraitement et son instantiation possible dans le

programme. Le svsteme resultant peut etrc incorporc dans un environment cooperatif

plus large d ' outils CASE et peut etre utilise lors du processus de remise en marche

du design pour performer la localisation dc concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgements

First of all I would like to thank my thesis advisor, professor Renato De Mori, for his

trust, support and advice during the period of this work.

I am also thankful to all the members of the speech lab for their help and co

operation. I have to explicitly express my gratitude to Charles Snow and Matt.eo

Contolini for their advice in crucial times, their help during the testing phase of the

system and most importantly their friendship.

I gratefully acknowledge the contribution of insightful ideas from all t.ho people

involved in the REVENGE project.

I am also grateful to my friends Luiza and Yiannis, for providing many happy

distractions and constant encouragement.

Finally I would like to thank my friend and co-supervisor Kostas Kontogiannis

for his continuous support, guidance and help. Without his valuable insights and

suggestions the completion of this work would not be possible.

I dedicate this work to my family and especially to my father for being a constant

inspiration throughout my life.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Contents

Abstract i

Resume H

Acknowledgements iu

List o f Figures vi

List of Tables vi

1 Introduction 1
1.1 M otivation... 2
1.2 Goals and O bjectives.. 4
1.3 Thesis o u tlin e .. 6

2 Problem Description and Related Work 7
2.1 Design Recovery... S

2.1.1 Representation M eth o d s .. 11
2.1.2 Concept to code m a p p in g ... 16

2.2 State of the p r a c t ic e .. 18
2.3 State of the a r t ... 22
2.4 The REVENGE p r o je c t .. 27

2.4.1 The influence of REVENGE ... 38

3 Gathering System Requirements 40
3.1 Adoption of macro process... 40
3.2 Conceptualization.. 42
3.3 A nalysis .. 47

3.3.1 A view of the p ro b le m ... 47
3.3.2 Use-case a n a ly s is .. 48
3.3.3 Hardware and software req u irem en ts .. 52
3.3.4 Analysis conclusions.. 52

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONTESTS

4 Fram ew ork Design and Im plem entation 54
•1.1 Code and Query low level representations.. 55
•1.2 Abstract Concept L anguage.. 58
4.3 Main code localization algorithm ... 61

4.3.1 The SratiC Model (SCM) .. 65
4.3.2 The pattern matching p rocess.. GG

4.4 Result form .. 74
4.5 Human interaction with the sy s tem .. 75
4.6 System architecture .. 75

4.6.1 The graphical user in te rface ... 77
4.6.2 The comparison eng ine.. 77

4.7 Evolution and M ain ten an ce ... SI

5 Experimental Results 84
5.1 The Subject S y stem s.. 84
5.2 Measuring performance... S7
5.3 Concepts and p la n s ... S7

5.3.1 Hierarchical concept, formation and recognition........................... 90
5.4 Testing results presentation and a n a ly s is ... 93

6 Conclusions 106
6.1 Future w o rk .. 106
6.2 Summary of conclusions.. 110

A The Abstract Concept Language grammar 112

B Examples of concepts 118

C A recognition example 125

List of Abbreviations 131

Bibliography 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

2.1 The design recovery process.. 9
2.2 Ariadne’s module decomposition.. 33
2.3 The system's architecture.. 37

3.1 The macro development process... 41
3.2 General view of the system... 51

4.1 Main system class design.. 59
4.2 The CSL Module.. 62
4.3 Example Ta and Te ASTs... 64
4.4 Part of the SCM describing the Iterative Statement "decomposition". 66
4.5 Example of dynamically created APM.. 6S
4.6 Generic architectural view of the system.. 76
4.7 Simplified interaction diagram for the Pattern Match Engine class. . . 80
4.8 Simplified system interaction diagram.. 82

5.1 Precision - Average Similarity Measure Diagrams.................................. 97
5.2 Retrieved Concept Instantiations - Weight Factors Diagrams................ 99
5.3 Retrieved Concept Instantiations - Weight Factors Diagrams....................100
5.4 Precision - Query Weight Diagrams.. 101
5.5 Precision - Query Weight Diagrams.. 102
5.6 Precision - Recall Diagrams ..103
5.7 The Graphical User Interface...............................105

C .l Resulting APM... 126
C.2 Comparison steps in the Viterbi algorithm for the example. 130

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Tables

4.1 Module sizes.................. ... 83

5.1 Physical size of subject system and their intermediate representations 86
5.2 Time statistics (part I).. 8S
5.3 Time statistics (part II)... 88
5.4 Time statistics (part III)... S9

A.l ACL's Reserved Words [I] ... 115
A.2 ACL’s Reserved Words [I I] ... 116
A.3 ACL's Reserved Words [I I I] .. 117

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Introduction

The time required to grasp the nature or the meaning of a newly created human

artifact, given some description of it. grows with the artifact’s complexity and the

quality of its description. In our days human artifacts tend to be extremely complex,

and although there might not be lack of information describing them, comprehending

such products is always a difficult task.

Information systems, and computer programs specifically, are among the most

intricate products one can come across today. To understand how such systems

function one has to recapture the design and decipher the requirements actually

satisfied and implemented by the subject system.

In order to comprehend how a program works three actions can be taken by an

analyst: read about it (e.g. read documentation); inspect the source code or run it

(e.g. watch execution, get trace data). Documentation is rarely excellent; in most

cases it simply does not exist or is inadequate and misleading. Studying the dynamic

behavior of an executing program can be useful but unfortunately is not always

possible. That leaves the source code as the primary and sole trustworthy source of

information. The investigation process which the analyst has to undertake is akin to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER I. {.XTRODCCTIO.X

i dfu prorr.<.<i!uj ilo.. The goal is to move from a chaotic collection of unrelated ideas

to an in tegrated , orderly in terpre ta tion of these it leas and their interconnect ions.

Nowadays, one of the main obstacles for an analyst is the size of the source code.

For successful systems, developed and enhanced through the years, the size is often

expressed in millions of lines. The need for tools which can assist the analyst in this

non trivial task is apparent.

This report describes our work creating a framework that can be used to build

tools capable of retrieving information from large data spaces by comparing for

mal, structure oriented patterns of features: partial as well ms complete matches are

detected. The described framework was used to develop a system which focuses on

source code for a specific programming language (namely C). The resulting system can

be integrated in a larger cooperative reverse engineering environment (REVENGE

[21]) consisting of various powerful CASE tools. A possible application of the sys

tem, when the input is source code in a programming language, is aiding software

engineers to recapture and understand the design of a program.

1.1 Motivation

Program comprehension is an even- day task for all programmers. Understanding

a piece of code can be a critical subtask of debugging, modifying or simply getting

familiar with a system. Reverse engineering is a supporting technology for program

understanding and can be defined as the process of analyzing a subject system to :

• identify the systems components and their interrelationships,

• create representations of the system in another form at a higher level of ab

straction [13],

The reverse engineering process involves extracting design artifacts and building

or synthesizing abstractions that are less implementation dependent from a subject

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1. INTRODUCTION 3

system: it is a process of examination not a process of replication or change [13. 62].

Systems that we do not know how to cope with but that are vital to an organiza

tion are called legacy systems [2]. Legacy systems represent years of accumulated

experience and knowledge. Program understanding, and its subtask design recovery,

become major maintenance activities when dealing with unstructured legacy systems.

Studies on how expert programmers remember code show they “chunk” code into

meaningful program segments and then mentally organize the chunks based on the

functional purpose of the code [65]. These chunks are often called mental plans.

cliches or concepts. Concepts are implemented by pieces of code consisting of a set

of program statements. We will refer to these pieces of code as code segments.

In other words the analyst uses his or her programming knowledge to recog

nize high level concepts. Typically this knowledge includes stereotyped code pat

terns of common programming strategies, data structures and algorithms. Using this

heuristic-based knowledge the analyst skips trivial parts and looks only for things he

deems important. As a result a functional model of the program is created and used

to guide maintenance activities.

Capturing knowledge effectively for the maintenance task is an open theoretic

problem. It is our belief that design recovery can not be fully automated. Whatever

substitute for a human maintainer, during the design recovery process, has been

proposed is simply not as effective. This observation led us to focus our research in

creating tools capable of assisting the maintainer in his task interactively.

The system described in this document can be considered as a part of a hybrid

design recovery system. Initially the analyst supplies an abstract description of a

code segment, which implements a design concept, to the system which in turn,

after exhaustive code analysis, returns all possible locations of this segment in the

source code. Partial match is allowed and for every discovered location, a measure of

the “distance” between the reported implementation of the concept and the segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1. INTRODUCTION •I

description, is also calculated and reported. The maintainer can subsequently inspect

the results and if necessary refine the concept's description and fine tune t he system

in order to achieve improved performance.

The basic goal of this research is to evolve Ariadne, a prototype system built for the

REVENGE project [21] which detects programming patterns. Ultimately the result

of this effort is the creation of a generic framework which could be subsequently used

to extend REVENGE. Therefore our system shares a number of common features

with Ariadne, the most significant ones are:

• the same core algorithm using Markov Models and the Viterbi dynamic pro
gramming algorithm to calculate the best alignment between two code scg-

• the same schema for intermediate code representation,

• the capability of being integrated in the cooperative environment of CASE tools
developed for the REVENGE project,

• a subset of the abstract language introduced in the prototype to describe code
segments and

• it focuses on the same target language (C).

On the other hand the new system is significantly different from its predecessor

in the following aspects:

• it is implemented in a different programming language using a new design,

• it is platform independent,

• it has a flexible and intuitive user interface,

• it uses different input source and representation,

• it is extensible and easy to maintain and finally

1.2 Goals and Objectives

ments,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1. INTRODUCTION o

• its design can be reused to handle source code from different languages.

It was our belief that the algorithm introduced in the prototype could be the

heart of a generic, reusable framework for information retrieval tools. Hence design

recovery is one of possibly many other tasks (i.e. simple code localization, pattern

matching based on a set of formally described features) depending on the target

language, where the framework can be used. For this reason we consider the system

as an information retrieval tool and not as a specialized design recovery tool. As a

result the main objective of this work is the creation of such a generalized, reusable

and extensible framework.

While building the system and writing this document the prototype build for

the REVENGE project was still undergoing testing as well as significant changes

and enhancements, because of this an evaluation based on quantitative or qualitative

comparisons of the two tools was not possible. We do not claim to have built a better

or more powerful system in respect to abstract language abilities, we can safely say

though that the new system is more generic and flexible than its prototype.

The theoretical background, presented in chapter four, is essentially the one de

scribed in [38, 25, 26]. Presentation improvements of theoretical issues were made

based on suggestions of the supervisors of this thesis.

The system built using the resulting framework focuses on code segment localiza

tion and was tested with several programs ranging from few hundred lines to several

thousand lines. We were able to describe code segments implementing both generic

and specific concepts and localize them in the code. During the experimentation

phase we were also able to realize a number of possible improvements th a t are re

ported in the future work section in the chapter six.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1. INTRODUCTION G

1.3 Thesis outline

In the next chapter we elaborate on design recovery process issues and present related

systems both commercial and experimental. At the end of the chapter t here is a brief

overview of the cooperative environment created for the REVENGE project. Chap

ters three and four contain detailed description of the system development, process

and its architecture. In chapter three we focus on system analysis issues and in chap

ter four on design and implementation issues. Chapter five presents our experimental

results. Chapter six discusses ideas for future work and presents a sum man- of our

conclusions. Finally appendix A presents a simplified description of the Abstract

Concept Language (ACL) we use in Backus Normal Form (BNF), appendix B con

tains a few examples of concepts used in our experiments and appendix C presents a

detailed example of concept localization using the described framework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

Problem Description and Related

Work

Much of the software used today in critical tasks is 10 to 15 years old [47]. Main

taining these usually successful systems involves a collection of puzzle-solving skills.

It includes getting tools to do the software process right and being able to deal with

unknown software and unmaintainable systems. Software maintenance practices ac

count for fifty to ninety per cent of total life-cycle costs[13] and around two per cent

of the gross national product in U.S according to a study published in 1990 [36].

Reverse engineering was the answer of the computer science community to the

high demand for a systematic approach to solve such problems. Chikofeky and Cross

in their influential work [13] adopt M.F.Rekoff’s definition of reverse engineering as

“the process of developing a set of specifications for a complex hardware system by

an olderly examination of specimens of that system”. The subject system is software

and the objective is to gain sufficient design-level understanding to aid maintenance,

strengthen enhancement or support replacement of the system.

We can divide reverse engineering in two major activities :

1. Redocumentation and

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 2. PROBLEM DESCRIPTION AND RELATED W ORK S

2. Design recovery.

Redocumentar.ion is the process of creating alternative multiple views of the program

in order to capture certain characteristics of the subject system. Design recovery fo

cuses on creating abstractions in order to impose a “meaning" on a program segment.

Although there might be a slight disagreement, in terminology it is widely accept ed

that reverse engineering is primarily a process of examination and not a procctss of

changing or enhancing the subject system [13, 62]. The process of introducing new

functionality or restructuring the subject system is called functional reengineering or

simply reengineering.

Our system is a pure reverse engineering tool designed to aid the maintainer in

his task to retrieve information in order to decipher designs from finished products.

Later the analyst might of course use the acquired knowledge to reengineer the subject

system while in the maintenance process. In the next sections of this chapter we will

present the basic concepts in design recovery and work of other researchers in the

field.

2.1 Design Recovery

Design recovery can be defined as a subset of reverse engineering in which domain

knowledge, external info and deduction with a sort of fuzzy reasoning are added to

the observations of the subject system to identify meaningful higher level abstractions

beyond those obtained directly by examining the system itself [13]. Biggerstaff adds

that “design recovery recreates design abstractions from a combination of code, exist

ing design documentation (if available), personal experience and general knowledge

about problem and application domains ...” . Using design recovery is some times the

only way to salvage whatever we can from existing systems, it lets us get a handle

of the system when we do not understand how they work or how their individual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCR.IPTIO.X AXD RELATED W ORK 9

programs interact as a system.

The initial input for most design recovery systems is source code in an enhanced

abstracted form. We call enhanced code, source code adorned with hints related to the

code functionality. These adornments may have the form of comments, control and

data flow information, annotations in the source code intermediate representation,

I/O commands or just idcntation. Using this input the analyst should try* to construct

a higher level description of the program. The process is usually bottom up and

incremental, the analyst detects low level constructs and replaces them with their

high-level counterparts.

Source Code

Source Code

Identified
module and
data abstraction
groupings

Recovered
design
abstractions

Component Abstraction Library j

Abstraction-to*
code mappings’"

______)

□ t
1

0-
,,......

" "

1

•vfl"

Informal
Conceptstnfoomil Concepts Design

Diagrams and relations Rational
Control Flow

-■■Tr

Figure 2.1: The design recovery process.

Given the actual program source code an analyst first looks for large-scale orga

nizational structures such as the subsystem structure and important data structures.

Useful design structures are also recovered and expressed in abstracted forms such

as design rationale, module structures and informal diagrams,concepts and relations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION A S D RELATED WORK 10

The next, step in the process is the population of reuse and recovery libraries in order

to facilitate further productive use of the recovered design components. In this step

all recognized components go through a generalization process so they can be made

available to a wider spectrum of applications. These generalized concepts are t hen

stored in a library forming a domain model. Finally the abstract design components

in the domain model become the starting point for discovering candidate realizations

of themselves in a new system's code. These basic steps of the design recovery process

arc shown in figure 2.1.

The most common methods used in program understanding are data and control

flow graph analysis.

Data flow analysis describes how information propagates from statement to state

ment and module to module. Control flow describes the sequence in which statements

are executed and how control is passed from one module to the other. Usually the

product of control flow analysis is a directed graph with annotations. Language

analyzers are used to recognize language constructs which implement data flow [31].

The ability to view the subject system from different perspectives is one of the

key objectives of reengineering [13]. An analyst can view the program from different

levels of detail [30]:

1. the implementation level view abstracts away a program’s language and im
plementation specific features, typically an Abstract Syntax TVcc (AST) and a
symbol table of program tokens are the produced artifacts,

2. the structure level view abstracts a program’s language dependent details to
reveal its structure from different perspectives, the result is an explicit repre
sentation of dependencies among program components,

3. the function level view relates pieces of the code to their functions to reveal the
logical relations among them and finally

4. the domain level view further abstracts the function level view by replacing its
algorithmic nature with concepts specific to the application domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 11

All the rr'SuUing views are usually presented to the analyst as a graph. Graphs

have been adopted ;is an intuitive and sound mathematical formalism to represent the

structure of a computer program. Graph complexity can be a metric for the main

tainability of the code. Prior experience using graphs in formal languages, compilers

and parsers was used and several techniques were "ported" in the field [53. 10. 23].

2.1.1 Representation M ethods

In order to move from the physical implementation of a system to high-level abstrac

tions of its modules and the logical, implementation-independent, designs the analyst

must ignore all unnecessary details embodied in the initial input. The following sub

section examines some commonly used representation methods to achieve this task

during the first step of the design recovery process (see figure 2.1).

The first task of the analyst is the creation of module and data abstractions. In

this section we present some of the most important solutions proposed.

Several researchers chose to directly divide the code to: data and methods acting

on the data, this is formally called the Data - Procedure code division. Describing

data structures can be done using tabularization [63]. For each data structure we

record its basic properties (i.e. name, position, type, length) in a table entry. Sub

sequent use of the resulting table as an input to transitive closure algorithms can

compute data flow and variable dependencies [49]. By introducing Relationship Ma

trices the same technique can be used to capture relationships among procedures,

constants and variables of procedures within the same module. One of the main

advantages of this approach is that matrices can be stored as tables in any relational

database. The analyst can then perform several queries on the stored data using

advanced features that database environments offer.

Another way to abstractly represent source code is by mapping each basic lan

guage construct to an object and capture syntax as a list of attributes. This method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 12

was introduced Das in [IS] and represents code ;is instances of the basic language

construct, classes. Automatic creation of objects, if a Backus Normal Form (BNF)

description of the language exists, was introduced in [37]. Extending the same concept

led to representations of even more complex constructs (e.g. functions or program

submodules) as objects thus allowing greater abstraction [41. 27],

A well accepted method for representing source code is using Decomposition Hier

archies [42]. According to this framework all single entry- single exit, programs can bo

represented as a structure consisting only of primitive program segments (sequence,

conditionals, loops) also called normal forms. Using an equivalence mapping one

can transform original source code to structured "code". Usually the source code

is parsed and an AST is formed, then with consecutive tree to tree transformation

we can obtain a tree in the form of a directed graph which will contain only normal

forms.

Further use of dependency analysis toois can enhance each source code represen

tation with the necessary adornments for further analysis. As a result the analyst

will get several graphs showing:

• definition dependencies,

• calling dependencies,

• functional dependencies and

• data flow dependencies.

Combining the information from these analyses with one of the previously de

scribed methods the analyst can complete the first step of the design recovery process

(see figure 2.1).

An experienced programmer can often reconstruct much of the hierarchy of a

program’s design by recognizing commonly used data structures or algorithms and

knowing how they typically implement higher level abstractions. The higher the

abstraction the easiest the understanding of the generic program structure [14, 58].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRJPTIOX AXD RELATED W ORK 13

Britrher uses design languages to model programs as state machines (for data

abstraction) and cartesian functions (for function abstraction) [7]. The resulting

representation is translated in the design language providing the analyst with a pseu

docode description of the source code. This approach is significantly different from

other approaches that use condensed code listing because of its strong mathematical

background and formality.

Presenting the user with a set of generalized control, data and call flow graphs

is another approach [45]. The level of abstraction is usually controlled by the user.

Each graph can be divided into prime subgraphs which have some basic functionality.

Data flow diagrams and structure charts are used to model the data transformation

aspect of a software system, since they deemphasize implementation details of the

problem while focusing on the logical flow of data and control [28].

Smvthe [61] replaces the intermediate representation with logical comments trying

to start deriving the meaning of small pieces of code. The next step is the recognition

of objects and object hierarchies, data are related to the procedures that operate upon

them. In the last phase application domains are mapped to objects and constraints

and system services to the user are identified (see figure 2.1).

Paul and Prakash proposed yet another approach in [51], they transform the

original source code to a set of static relations describing code features (e.g. variables

defines or used). Using this new intermediate representation the analyst can use

all the commonly defined relational operators (e.g. joins, projections) or define new

operators to aid in the analysis task he wants to perform.

Quilid [56] translates the original program into an Abstract Syntax Tree (AST)

with frames which are used to represent each program action and its relationship to

other actions. Actions are any units tha t the translator is capable of recognizing from

language constructs.

ASTs are one of the most popular forms of intermediate program representation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION A.XD RELATED WORK U

The creation of an AST is a three step process. Initially the program's source code is

parsed using a grammar and a domain model created for the programming language of

the subject system. While parsing the code structures, corresponding to the language

basic constructs defined in its domain model, are created, populated and placed in a

tree like formation. The final step in the creation of an AST is adding any additional

information in the form of annotations in the nodes of the tret-.

Rigi [46] uses entity relationship diagrams to represent static program relation

ships. A specific format known as Rigi Standard Format. (RSF) is used to store these

diagrams. The next step is to analyze the resulting RSF tuples in order to create

visual images to facilitate program understanding and aid further analysis.

Abstract functional concepts can also be represented by programming plans or

cliches. Possible components of a programming plan [22. 5S, 19, 71] arc the building

components of an algorithm in terms of atomic program elements or other plans in

the proper sequence (event path expression) [30]. Plan definitions arc translated by

a plan parser into inference rules as system’s understanding knowledge. A pattern

directed inference engine is then used for recognizing plans in a program and the whole

understanding process is recorder by a Justification Truth Maintenance System. The

effort here is the creation of a knowledge based system for program understanding.

Several interesting issues arise by this approach, defining system’s knowledge as plans,

capturing all variations of an algorithm and guarantying completeness and correctness

of the knowledge base are still major challenges.

Wills in [71] uses a graphical notation, called the Plan Calculus to facilitate un

derstanding of complex annotated Sow graphs that are used for plan description

and recognition. This approach combines control and data flow graphs and is very

descriptive but unfortunately not portable.

Hartman breaks down cliche recognition [31] to three major steps :

• a program representation or model,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 15

• programming knowledge of standard plans, and

• search and comparison to find a plan instance.

The reader can easily sto that this decomposition is equivalent to our design

recovery process breakdown (figure 2.1). Cliche recognition is thus a significant step

towards understanding the programmer's intentions.

All the above mentioned methods rely on the existence of an expert on the subject

system for this second step. Everybody will accept that the easier solution to any

problem is finding someone who knows the solution. Some claim that we are very far

from a completely automated design recovery process [3]. A possible replacement of

human experts is the existence of some knowledge base - domain model that could

capture this necessary expertise. Biggerstaff [3] defines the domain model as ‘"the

knowledge base of expectations expressed as a pattern of program structures, problem

domain structures, naming conventions and so forth, which provide a framework for

the interpretation of the code". Building such a knowledge base is a non trivial task:

it is the result of a process known as domain analysis during which information used

in developing software systems is identified, captured, structured and organized for

further use [54].

The main functionality of such a domain model is to include more information

than the analyst can find in the code alone and thus guide and assist the code

understanding process. Tools that respect the above mentioned guidelines exist and

will be briefly presented in following sections.

The end of this second process step should leave the analyst with a library of

recognized design abstractions. The next step is mapping the acquired knowledge to

the source code (see figure 2.1). The underlying assumption here is that the analyst

expects these abstractions to occur in multiple places in the code. Of course this is

not guarantied, it is perfectly valid that the only occurrence of a concept will be on

just one point in the code. Never the less one thing the analyst knows a priori is that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK u;

his effort to locate the abstraction in the source code should at least yield one result

if perform ed in the sam e piece of code that was used to "originate" the abstraction.

2.1.2 Concept to code mapping

The final goal of the design recover}- process is to locate the occurrences of nx-oguizixl

abstractions in the source code. The task presents several challenge but certainly the

most important one is the implementation of an algorithm to compare intermediate

code representation and plan descriptions.

The ideal scenario would be to be able to deduce plan-source code functional-

logical equivalence. This is an undccidable problem and in reality the most opti

mistic result any algorithm can claim is partial recognition. The expressiveness anti

the freedom provided to the user by currently used programming languages make

recognition of equivalent plans a very difficult task. Problems related to concept-to-

code matching are [5S, 71]:

• syntactic variations of the same concept,

• parts of the concept might not be adjacent in the code - scattered concept,

• implementation variations,

• overlapping occurrences of a concept,

• unrecognizable code,

• variable aliasing and

• side effects.

Systems might also report incomplete together with multiple or unsuccessful

recognition results. Using domain knowledge and information, besides the source

code and the concept description, the analyst should be able to resolve ambiguities.

If not. then incomplete bindings should be produced for further studv.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 17

Comparison-matching algorithms depend on the intermediate representation used

to describe a concept. A quick look in the literature reveals a great diversity in the

intermediate representations used in design recovery system, we will just mention a

few.

The comparison algorithm in PROUST [35] matches syntax trees with syntax

tree templates. In TALUS [48] user supplied function are compared with reference

functions using heuristic similarity metrics. In CPU [40] comparison is done by

applying unification and a matching algorithm on lambda calculus expressions.

Perhaps the closest approach to the one presented in this paper is the one used

for PAT [30]; the original program is parsed and a set of independent objects (also

called events) is created and stored in a repository called : the event base. These

objects are subsequently used to recognize higher level events and function oriented

concepts using a deductive inference engine.

In the Program Recognizer [58] a programming plan or concept is presented as a

hierarchical graph structure composed of boxes which denote operations and tests,

and arrows which represent control and data flow. Using this framework, plan (or

cliche) recognition can be seen as a graph parsing problem which is the identification

of subgraphs inside a larger graph that represents the whole program. When a cliche

is recognized, its subgraph is substituted by a more abstract operation - node in the

program graph thus forming an abstract and comprehensive image of the system.

For Quilici [56] programming concepts or plans are represented as data structures

with two main parts: a plan definition, which lists the attributes of the plan that are

filled in when instances of the plan are created, and a plan recognition rule, which lists

the components of the plan and the constraints on those components. An instance

of the plan is recognized in the AST, which serves as the program’s intermediate

representation, when all its components have been recognized without violating the

constraints. The diversity is obvious, more systems are described later in the state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 2. PROBLEM DESCRIPTION AND RELATED W ORK IS

of the art section.

An interesting issue is also the initial selection of possible candidates for com

parison. In most systems the comparison occurs between the source code abstract

representation and a plan expressed in the same abstraction formalism (graph, AST):

in these cases a search algorithm is invoked to locate possible comparison starting

points. Bottom-up approaches usually select all possible candidates found anywhere

in the program’s intermediate representation, while top-down approaches seek only

specific parts that can satisfy a given subgoal.

If the program and the plans are not represented using the same formalism than

hierarchical recognition control strategies are adopted. In this case complex plans arc

recognized in terms of their subcomponents.

To facilitate the comparison program, decomposition can be performed to produce

program parts more likely to correspond to the plans. Program decomposition can

be performed a priori before the selection starts or dynamically based on previous

comparison results.

2.2 State of the practice

A variety of commercial tools capable of helping the analyst in his task of reverse

engineering a system are available today. In this section we will describe some well

known systems that focus on design recovery and program understanding. Most of

these tools perform data and control flow analysis of the system. The ultimate tool

for program understanding would include all the following features :

• a user friendly user interface,

• a local repository - knowledge base,

• several graphic editors,

• program fragment localization capabilities,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 19

• redundant and duplicate code detection,

• dead code detection,

• powerful domain model browsing and editing,

• enhanced code browsing,

• simulation capabilities,

• on-line help and

• configuration and version management.

Using a combination of several available tools an analyst can use most of these

features today.

The Software Refinery or simply Refine [39] is one of the most widely used tools in

the reverse engineering field. The package consists of three tightly integrated modules

1. a high level specification language,

2. an object oriented repository and

3. a language processing system.

There are also facilities for user interface extension. Refine currently supports four

popular programming languages : COBOL, Ada, C and Fortran. The system takes

the source code and parses it, using its language processing module. The result is an

annotated AST which is stored in the tool’s local workspace-repository. Several data

and control flow analyses are offered and various reports can be generated (i.e. coding

standards, variable and types reports). Using the specification language, which is a

Lisp dialect, the analyst can perform further queries on the repository and implement

algorithms to perform new analyses. The extensibility of the tool is one of its most

compelling features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 20

VIA/Center is a Yiasoft [12] product and focuses on COBOL systems. Offered

analysis covers data structuring and relations as well as traditional control flow anal

ysis. The results are stored in a specialized database.

Cadre technologies [12] offers a set of applications which arc able to graphically

represent abstraction hierarchies and also provide statistical information about pro

gram execution.

Design Recover}’ [S] is a product of Intcrsolv. The system can translate COBOL

code to diagrams that clarify the underlying structure. To generate the physical

models a local database of definitions is consulted and enhanced. The models can

be examined, altered and then reused to generate new code. The tool has several

other features like: dead code detection and complexity metric calculation for code

segments.

LogiCASE [66] by Logic Technologies is a CASE tool that supports the mainte

nance and development of C programs and their corresponding detailed design. It can

be used for reverse and forward software engineering and it offers design recovery from

code as well as code generation from design. Design recovery tools transform selected

code into a decision table. When the modification is complete, code is regenerated

from design.

The TXL Transformation System [16] developed in Queen’s University is used by

Legasys Corporation for their products [17]. Legasys focuses on legacy code analysis

and design recovery systems, with an emphasis on large-scale systems implemented

in COBOL and C. The TXL TVansformation System is presented in the next section.

FULCRUM 2000 is a product by Software AG [64], it is also an extension of the

FULCRUM Workbench environment for long-term applications and design recovery.

At the Palo Alto Research Laboratories of Lockheed [44], a system called In Vision

is developed. It is used to renovate software, it was created to allow companies to

modernize their legacy software assets, while incorporating contemporary data access

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 21

standards, performance, and reduced maintenance costs. At the heart of InVision is a

robust reverse engineering environment that uses object-oriented and expert system

software design recovery technology.

Imagix produces Imagix4D [33] which is a program understanding tool. Imagix

4D, helps the analyst understand software that is complex, large, or unfamiliar. The

tool provides modules for automatic exploration and documentation of code and use

knowledge-based exploration and information visualization technologies.

Leverage Technologies [67] offers off-the-shelf tools for C, FORTRAN, Cobol,

PL/I, and Ada based on the Software Refinery system. These tools can be used

for: redocumenting and extracting design from legacy systems.

Several packages that allow smart code browsing have also been developed (Hv-

persoft [12] for COBOL and X technology [12] for C).

Other commercial systems (source [1]) are :

• Ensemble by Cadre ,

• Amdahl’s Map Tool,

• Imagix- program understanding tools for C and C ++,

• MOREIRA Consulting a tool for reengineering Legacy Systems,

• Strategix Reengineering Information Systems,

• Reading CASE Services, Reverse Engineering Tools,

• ASMFLOW by Quantasm Corporation,

• Bachman Re-engineering Product Set,

• Ernst and Young Redevelopment Engineering Tool Set,

• Intercycle by Interport Software Corporation,

• PACREVERSE,

• PATHVU by XA Systems Corporation,

• re/NuSys by Scandura Intelligent Systems,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 2. PROBLEM DESCRIPTION AND RELATED W O RK 22

• pSOSystem by MasterWorks.

• RXVP by General Research Corporation and the

• Sneed Tool Set.

Unfortunately detailed information about implementation issues for most of these

systems is not publicly available.

All of the above systems although powerful can not earn,' through the whole

task of reverse engineering a given system. Several attempts to create an integrated

environment gain support and progress on domain analysis is probably the key to

the problem. If a generic standard for an intermediate representation can be adopted

by different tools then we will be much closer to the desired solution. Currently the

analyst has to use several tools separately to achieve the results he aims for. Stepping

to more experimental approaches we find a considerably larger number of systems.

2.3 State of the art

A multitude of significantly different approaches have been pursued focusing on the

design recovery problem as part of the program understanding process. In this section

we present some of the most well known systems that emerged from various research

labs.

PROUST [35] can be viewed as an intelligent tutoring system for novice program

ming students. The target language is Pascal and the user should initially create a

template describing the pattern he is looking for. PROUST uses a top-down control

strategy applied to a solution goal tree. The matching occurs between templates and

source code. Heuristics and a set of transformations are used for ordering, compari

son, evaluation and search space minimization.

The TXL Transformation System [16] is a general purpose source-to-source struc

tural transformation system. According to its developers, TXL can be used for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 23

source code analysis and migration, to program restructuring and design recovery

tasks. Transformations are specified in the TXL programming language, a hybrid

functional-rulc based language with unification, implied iteration and deep pattern

match. Each transformation specification has two components : a description of

the structures to be transformed, specified as a grammar in unrestricted ambiguous

context free BNF;and a set of structural transformation rules, specified by example

using pattcrn-rcplacement pairs. TXL has been used to transform many popular

programming languages.

Another system using knowledge-base tools for reverse engineering legacy systems

is COGEN [43], The system tries to capture and model the expert knowledge of

software engineers in terms of conversion rules. COGEN uses an AST representation

and stores it into a deductive relational database. The data definitions are captured

in a symbol table. Queries can be entered into the database to obtain various kinds of

useful information about the program’s structure and behavior in terms of data and

control flow analysis. To convert the program, the translation rules are applied to

restructuring the program in the database, creating new facts describing the program

in the new environment and altering the original syntax tree with new statements

added and old statements commented out

Talus [9] is another system developed for intelligent tutoring. The target language

here is LISP. The system is capable of automatic program debugging by correcting

errors in LISP programs. To perform this task the source code is compared with

correct code which has the same functionality. Comparison occurs between user sup

plied functions and reference functions from a library based on a heuristic similarity

measure. To locate comparison candidates the system uses a A* best first search

algorithm.

Letovsky’s system called CPU [40] represents programs as lambda calculus expres

sions and procedural plans. The system uses rewrite rules and a bottom-up control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 21

strategy. Top-level control selects and transforms lambda calculus subexpressions

applying all possible transformation rules until no more transformations are possi

ble. Comparing candidate segments in CPU is done by applying a unification and

matching algorithm on lambda calculus expressions.

A rule based approach is also followed in the Program Analysis Tool (PAT) imple

mented by Harandi [30]. The heart of the recognition system is a deductive inference

engine. Initially an object oriented representation of the system is created after

parsing the original source code. Rules arc then used to describe plans and higher

abstractions of objects and function oriented concepts.

Object oriented representations of code arc also used in a number of systems

[27, 41, 18]. The SAMS system [37], for example is actually implemented on top of

an object oriented DBMS.

Systems that use an AST intermediate representation arc the RECORDER [10]

and PECAN [57]. PECAN is a smart code browsing system. Source code is parsed

and an AST is created the source may be viewed in a number of different ways. The

code itself may be pretty-printed with multiple fonts, as a structured flowchart, or as

a module interconnection diagram.

Using graphs as the main representation formalism led several researchers to de

velop systems that are actually comparing graphs. The following six systems fall in

this category.

In UNPROG [32], the abstractions used have the form of control and data flow

graphs. The user specifies a programming plan in the same terms and then the

source code control and data flow relations are compared with the programming

plan’s control and data flow graph relations. If we can prove that a subset relation

exists then the user specified plan is recognized.

Quilid’s system [56] tries to match structurally frame schema representations of

C code. If the match is successful then data flow graphs are compared. Candidate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK

plans arc selected based on an indexing scheme. After a successful match semantic

abstractions occur by substituting the selected frame with the abstracted one. The

process continues until no further abstractions can be generated.

In [20] a design recovery prototype is described. The system works on a subset

of Modula 2 and uses graphs. The original code is parsed into an intermediate form

called Program Analysis Graph (PAG). Further analysis of the PAG with the aid of

a knowledge base leads to a transformation into another more abstract PAG. Finally,

translation of this resulting abstract PAG into the user required form occurs. This

form can be a program in the original or in another programming language, or even

readable documentation.

Influential work on graph parsing is done also in the Programmer's Apprentice

Project [58], the Program Recognizer [70] and their successor GRASP [71]. Attributed

graphs arc used to represent programs and thus subgraphs represent programming

plans. The system performs bottom-up graph parsing using a context-free graph

grammar representing standard transformations between standard plans and seman

tic abstractions for already recognized plan instances. Parsing checks all possible

subgraphs thus all possible interpretations can be found and be represented in a lat

tice. The actual comparison is performed by matching subgraphs and by checking

constraints involving control dependencies and other program attributes. All three

last mentioned system depend on analysis of the low-level formal details and therefore

emphasize a full and exact match for recognition. The computational load required

suggests that scaling up to industrial sizes will be quite difficult.

The work by Arango [23] has solved the scaling up problem but can’t create

abstractions as generic as other systems (see Desire). Arango’s system (Draco) focuses

on the structure of the transformations and the operations on transformations trying

to completely automate the recovery process. To achieve this all informal information

is completely ignored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 2. PROBLEM DESCRJPTIOX A.XD RELATED WORK

Desire [3] works on C code and implements several of the ideas presented in the

theoretical part of this chapter. In this system C code is parsed and several parse

trees are produced. A set of postprocessors use these parse trees and a dictionary

containing higher level information about functions, files and global data is produced.

The next step is the creation of a planc-tcxt web by postprocessing the abstractions.

The analyst can then write Prolog statements in order to extract information from

the stored abstractions.

The SCRUPLE [51](Source Code Retrieval Using Pattern LanguagEs) system

developed in the university of Mitchigan is based on a pattern query language. The

analyst uses this language to specify structural patterns of code. The degree of

precision can be adjusted be using different language mechanisms. The user specifieri

pattern is checked against the parsed source code which has the form of an AST. To

allow users to express more powerful queries a source code algebra is defined. Queries

can thus be optimized using algebraic transformations rules and heuristics.

However powerful analyses all these systems can perform none can claim efficiently

solving the main problem which is design recovery. Corbi states that automatically

recapturing a design from source code is not considered feasible task yet [15]. The

obvious question now is how can we get the most out of the existing tools. The

answer is integration.

Tool integration and increased interoperability of tools represent major current

trends. This is evident from the extensive efforts toward improved integration be

tween front-end tools and code level tools. Integration will enable more adequate

support for both forward and reverse engineering[60]. The next section describes our

experience trying to build an integrated environment and how it relates to the work

described in this report.

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 27

2.4 The REVENGE project

Mannv Lehman observes that any software must continually change or become less

useful in the real world. This was exactly the problem with the Structured Query

Language/Data System or simply SQL/DS. SQL/DS is a large relational database

management system that has evolved since 1976. Based on a research prototype after

numerous revisions it was first released by IBM in 19S2. The system was originally

written in PL/AS and then migrated to PL/X. PL/AS is an IBM proprietary system

programming language. The system now consists of more than three Million Lines Of

Code (MLOC). The target of the REVENGE project was to use several complemen

tary reverse engineering technologies on this real world system to help its evolution

and maintenance.

During evolution inevitably the structure of a software system will degrade unless

remedial action is regularly taken. The problem is that for most legacy systems no

remedial action is ever taken and as a result the system after several evolution cycles

becomes completely unstructured [2],

Some of the initial goals of the project were:

• detecting uninitialized data, pointer errors and memory leaks,

• detecting data type mismatches,

• finding incomplete uses of record fields,

• finding similar code fragments,

• localizing algorithmic plans,

• recognizing inefficient or high complexity code,

• predicting the impact of change and

• creating a framework for the integration of the resulting systems.

The main constraints were ensuring code correctness and performance enhance

ment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK

System com ponents

To achieve the given goals six systems were selected or developed by different teams.

1. SCRUPLE from university of Mitchigan,

2. Rigi from university of Victoria.

3. Ariadne from McGill university,

4. Telos from university of Toronto.

5. a filtering detection system from IBM Toronto Labs and

6. a text redundancy recognition system from NRC.

All tools were tested using C programs as subject systems but should also be able

to handle PL/AS code with little or no modification.

The IBM system [11] performs defect filtering using the commercial product Soft

ware Refinery.

The NRC system [34] identifies the exact repetition of text in huge source code.

The approach works by fingerprinting an appropriate subset of substrings in the

source text. A fingerprint is a shorter form of the original substring and leads to

more efficient comparisons and faster redundancy searches.

The three first systems focus on pattern matching approaches of the subject sys

tem in different levels. SCRUPLE was described in a previous section.

Rigi [46] was used to assist the system’s redocumentation. The source code is

parsed and the resulting artifacts are stored in a local repository. Using these arti

facts we can create a fiat flow-resource graph of the system. This first fully automated

phase is followed by a semiautomated phase in which the analyst explores interac

tively the system using his/her pattern recognition skills and language-independent

subsystem composition techniques provided by Rigi. The result is the creation of

subsystem hierarchies. A multitude of views of these hierarchies can then be created.

f r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 29

Evaluation and understand ing o f these views can aid efficient rcdocum entation o f the

subject system .

The repository developed in the university of Toronto is called Telos [24]. The

group in Toronto was in charge of developing an information schema - domain model

that could be "understood” and used by all the tools involved in the project. The

repository using this schema should be able to save all the artifacts of the various

analyses performed by the cooperating tools. To minimize the workload for this

global repository each tool only stores in it. data required by other tools. The rest

of the analysis information resides in the each tool's local workspace and can be sent

to the repository if requested.

Ariadne [38, 25] tries to address three important problems:

1. produce intermediate representations able to capture structural and semantic

aspects of the system,

2. automatically locate similar fragments of code (code cloning detection) and

3. partial recognition of programming plans or intents in the source code.

As we saw in previous sections a variety of intermediate representations exists.

Ariadne uses an object oriented annotated AST. The AST is created after source code

parsing using the Software Refinery’s language processing module enhanced with our

domain model and grammar for the C language. The resulting AST is annotated with

important information computed by several data and control flow analyses. Every

node in the AST is adorned, among other information, with :

• source code location,

• links between identifier references and corresponding variable and data defini
tions,

• variables used and set,

• functions called,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 2. PROBLEM DESCRIPTION AND RELATED WORK

• variable scope information.

• input/output operations.

• a series of complexity and quality metrics (D-Complexity. fan-out. McCabe.
Henry-Kafura's information flow quality and Albrecht's function point quality
metric)

In large legacy systems code duplication is a common problem. Programmers

trying to extend the system's functionality tend to "cut and paste" pieces of cotie

in order to reuse it somewhere else in the system. As a result code modularity is

destroyed and existing bugs in the initial code arc replicated. If the code remains

unchanged then the NRC tool can trace it but if even slight changes are made, the

fingerprint approach is no longer effective. The task of comparing functionality of two

code fragments is still an open theoretical issue. However applying heuristic rules can

provide us with an initial answer which the analyst is subsequently called to validate.

The assumption we made for our heuristics is that similar pieces of code have similar

feature and metric values.

To implement our solution [26] for the second task (localization of similar code

fragments) the annotations in the enhanced AST were used. The metrics used as

heuristics are:

1. fan-out which is the number of functions called from a source segment,

2. the ratio of input - output variables to the fan out,

3. McCabe’s cyclomatic complexity,

4. Albrecht’s Function Point quality metric and

5. Henry-Kafura’s information flow quality metric.

Comparisons are made using the Euclidean distance defined in the five-dimensional

metric space and clustering thresholds defined on each individual measure axis. Fur

ther grouping of code segments based on criteria such as shared data references and

data bindings is also performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W O RK 31

The final task was plan localization, the solution implemented in this project was

the inspiration for the work reported in this document. As we sa%v earlier graph based

solutions to this problem result in computationally expensive and complex algorithms.

On the other hand algorithms using plain textual-lexical matching fail when plans are

delocalized or contain “noise” in the form of irrelevant statements. Also algorithms

in the last category cannot possibly capture any behavioral information about the

system.

We believe that a fully automatic approach based on an incorporated library is not

fit for our task. Having to reengineer proprietary code one does not have the luxury

of access to a vast collection of plans in this language. Our algorithm encourages

human assistance. Plans have the form of portions of the annotated AST and are

expressed in a rather powerful language we call Abstract Concept Language (ACL).

More details about our approach will be given in a following section.

Figure 2.2 shows a high level module decomposition of Ariadne. Main system

activities are depicted as separate modules, each module is described briefly in the

following paragraphs.

A typical session using Ariadne would be the following: the user chooses the piece

r . of C code he is interested in analyzing and then parses it using the built-in parsing

facilities of Refine in order to create an object-oriented AST which will be used for

further analysis. Refine provides a standard domain model for the C language which

is extensible and can be augmented to include any additional information the analyst

deems necessary.

The first step after the creation of the AST is the calculation of a series of metrics

which is done by the Metrics Calculation Module. Metrics are used in almost all

further analysis. For example the user can identify similar code fragments (also known

as clones), this is possible by comparing metric distances (absolute or euclidean) of

candidate code fragments. Using metrics which are actual real numbers instead of

f t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 32

vectors of features simplifies and accelerates the whole process: code cloning detection

functions are part of Code Cloning Detection Module. Several dataflow analyses of

the target piece of code are also possible (i.e. common references, data bindings) as

parts of the Dataflow Analyses Module.

Another separate module is the one that constitutes the prototype based on which

we developed our system. The Programming Plan Recognition Module focuses on

identifying code abstractions described in an Abstract Concept Language (ACL) in C

programs. This module is based on the theoretical background described in chapter

four.

Finally Ariadne has the ability of storing analyses results (and any other object

in its object-oriented AST) in a centralised object-oriented repository that can be

accessed by other cooperating tools. Communication with the repository is possible

through two modules that handle the downloading and uploading of the AST as well

as other synchronization issues.

Implementing a way of integrating the various involved tools was a core require

ment of the project. In CASCON’95, a conference organized by IBM’s Center for

Advanced Studies laboratory in Toronto, we demonstrated the final product and

showed the implemented capabilities. In the next few paragraphs we will try to

present the environment’s architecture and analyze how we implemented two way

tool communication.

Making tool interaction possible

Integrating different reverse engineering tools to supply the analyst with enhanced

functionality is a major trend in the field. The key issue, in this effort to create such

an environment, is the adoption of some common source code representation to serve

as a communication standard. For us this standard was the global schema used by

the repository. The basic requirements for the global schema are :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 33

Ariadne
[̂ Refine Extensions i

Language
Domain
Model

Code Cloning
Detection
Module

Metrics Dataflow
Calculation Analyses
Module Module

Source
Code
Parsing Module

Programming
Plan
Recognition
Module

AST
Download/Upload
Module

Communication
Module

W —

/ ISource \
\ Code /

:Row of information in
s-cxprcssion format

Mediator

Repository
(Telos)

Figure 2.2: Ariadne’s module decomposition.

»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 3-1

• completeness and

• flexibility - extensibility.

The schema should be able to capture artifacts from different cooperating tools.

The main strategy to achieve these goals was creating object mctaclasses and classes

for all common objects in different tools as well as specialized classes for tool depen

dent objects. For example both Rigi and Ariadne can have the notion of a function

and thus the creation of one class with attributes that can capture all possible infor

mation generated by each tool was the solution. To capture objects particular to one

tool in the environment, tool-specific subschemas were designed and implemented.

The next phase was detecting possibilities of tool cooperation. Each tool’s func

tionality can be complemented by some other tool’s capabilities thus leading to new

analysis possibilities and generating novel views of the subject system.

Telos being an object oriented repository provided an excellent platform for the

resulting schema. Having achieved data integration using the schema we had to ensure

control integration. Control integration was made possible through a customizable

and extensible message server named Telos Message Bus (TMB).

In order to send an object’s description to the repository the s-expression formal

ism was used. As we already mentioned the repository’s global schema describes all

possible object classes. When an instance of a class has to be stored its attribute

values are sent to the repository. An instance of a program with only two attributes

(the program directory location and name) described in s-expression format would

be :

(Program.1242 Token
(Program)
O (
((programDirectory)
(("/reverse/data/src/list”)))

(CprogramName)
(("list")))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED W O RK 35

Analysis of this s-expression reveals the following points : firstly an identification

string for the object (Program.1242) is given then the object’s tier is specified. Telos

allows three possible object ranks :

1. Mctaclass : objects of this rank are used as class generators,

2. Class : objects in this tier are actual class definitions,

3. Token : token objects are instantiations of a class.

Having metaclass and class tiers allows each tool to dynamically expand the

schema by sending a new metaclass or class specification always in the form of s-

expressions. An example of such an s-expression follows.

• M etaclass

(RefineClass MIClass
0
(ObjectClass)
(((attribute)
((refineNonTreeAttribute Proposition)
(refineTreeAttribute Proposition)))))

• Class

(ExtractionObject SClass
(ObjectClass)
(Object)
(((attribute setValue)
((allRelevantObj ectsToAnalysis Obj ect)))
((attribute singleValue)
((correspondingCode ProgrammingObject)
(analysisName String)
(dateOfAnalysis String)))))

Secondly the s-expression description for the program token references the base

class of the token (Program). Thirdly the pair of empty parenthesis that follows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 2. PROBLEM DESCRIPTION AND RELATED W ORK 36

is reserved for the token's ISA class. In our case is the same as the b;ise class

and thus omitted. Finally following these necessary basic fields, the names and the

corresponding values of each attribute for the object arc sent. Attribute values are

classified in the following categories:

• single value attribute (String.proposition),

• set value attributes {SetValue) and

• sequence value attributes (default).

Another example of an s-expression follows, here the reader can see the values

passed for some of the metrics and attributes that we use for our analysis.

(Function_1243 Token
(Function)
0 (
((albrecht)
((23.0)))
((dComplexity)
((1.5)))

((fanOut)
((1 .0)))
((functionDefBody)
((Block_1244)))
((functionDefParameters)
((DeclarationSubtree_1245)))
((functionName)
(("elementcreate")))
((identifiersUsedNames)
(("i")
("_iob")))

((kafura)
((576.0)))

((location)
(("element.c:13,25")))
((mccabe)
((2 .0)))
((variablesSetlnConstrNames)
(("info")
("next")))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER. 2. PROBLEM DESCRIPTION AND RELATED W ORK 37

Local
Workspace

Local
Workspace

Local
Workspace

Ariadne AriadneRigi
Machine A

SCHEMA
(Telos)

Data Server
(TMB) Object Base

QbjectStore
Control Integration Data Integration Machine B

Local
Workspace

Ariadne
Machine C

■ • O :Flow of information in
S-cxpression format

%

Figure 2.3: The system’s architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

e CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK

In an implemented scenario of meaningful tool interaction Ariadne produces anal

ysis objects which arc sent to the repository. Rigi downloads these oh jet ts. uses them

to perform analyses not supported by Ariadne and then uploads the objects enhanced

with the new analysis information back to the repository. Ariadne can then ret rieve

these objects and perform additional analysis. A delicate issue here was mapping t he

retrieved objects to objects back in Ariadne's local workspace. The implementation

of a mechanism to accomplish this task and ensure atomicity between the transferred

objects, the evolution of the user interface and the communication module for the

Ariadne system were the writer's contribution to the REVENGE project.

The overall system's architecture is shown in figure 2.3. Various CASE tools

(i.e. Ariadne. Rigi) arc running in different machines across the network performing

analysis on the same or different subject systems. Resulting information is passed to

the Data Server in s-expression format, stored in the knowledge base and sent upon

request to any cooperating tool.

Our involvement with the REVENGE project had a major influence on the work

described in this report. The decisions we took based on our experience building and

using REVENGE a r e :

for Ariadne in Refine,

• making the new tool part of the REVENGE environment.

• using parts of the domain model for the global schema created for REVENGE,

• keeping the s-expression formalism for our communication with other tools in
the environment.

Studying the algorithm used for partial recognition of programming plans or in

tents in the source code we felt that a more generic version of the algorithm could be

used to achieve code segment localization in different programming languages.

2.4.1 The influence of REVENGE

• adopting the algorithm for code segment localization previously implemented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 39

The key idea was to keep the essence of algorithm but change the structures

upon which it operated. The methodology is thus the same but the overall design

is different. We still represent nodes in the AST as objects but the design of the

class hierarchy and the way the algorithm is implemented and distributed among the

classes make the new system generic enough to be used with different languages.

The approach for code segment localization resembles the one described in SCRU

PLE [51] allowing for a similarity score to be computed between a query and a re

trieved component, but offers significant enhancements in the query* language and the

comparison method. The complete algorithm will be presented in the next chapter

in the design section.

Our new tool can be part of the integrated reverse engineering environment we

described. Being compatible with REVENGE means being able to receive our input

and send our output to other tools which respect the global schema. As we will show

in the next chapter this fact presented several advantages.

We want to make clear a t this point that the work described in this document

is not merely “porting” the algorithm implemented in Ariadne to a new software

platform. The new system presents a major difference: it is based on new, flexible

and extensible framework and consequently its implementation is far more generic

than the one in Refine. To place our system in the general design recovery process

shown in figure 2.1 we can say that it focuses on the last step of the process which is

mapping abstractions to the source code. The following chapter will make all these

statements more clear to the reader by documenting the whole process of building

the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Gathering System Requirem ents

This chapter discusses the first steps toward the creation of a generic framework

which will be used to implement a new system for code segment localization. The

new system is based on the algorithm used in the prototype built for the REVENGE

project. Motivation for building a new system will also be discussed. The purpose of

this work was to extend and generalize the prototype’s functionality and domain. In

the following sections we explain in detail the process of capturing the core require

ments for this new system.

3.1 Adoption of macro process

One of the first requirements for the new system was to implement it in a platform-

independent, popular, object-oriented language. Having chosen C + + as the imple

mentation language we tried to find in the literature an appropriate framework that

would help us formalize the development process. The process adopted was the one

proposed by Booch [6]. In the next sections we will describe our actions to accom

plish each step of the process. The macro development process consists of five major

activities (see figure 3.1) :

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SY ST E M REQUIREMENTS 41

Create an
architecture
(design)

Evolve the
implementation
(evolution)

Establish core
requirements
(conceptualization)

Develop a model of
the desired behavior
(analysis)

Manage Post Delivery
evolution
(maintenance)

Figure 3.1: The macro development process.

1. Establish the core requirements for the software (conceptualization)

2. Develop a model of the system’s desired behavior (analysis)

3. Create an architecture for the implementation (design)

4. Evolve the implementation through successive refinement (evolution)

5. Manage postdelivery evolution (maintenance)

Although the formal definition of the macro process may seem trivial to every

experienced developer we found it particularly useful as a mean of structuring this

chapter in a coherent way. In the lifetime of our system we had the chance to perform

all the five activities mentioned and we are repeating the process trying to maintain

the system. Adding new features and porting the system to other platforms are the

activities currently performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SYSTE M REQUIREMENTS •12

3.2 Conceptualization

The main purpose of this activity is capturing the core requirements of the system. As

we mentioned earlier a functional prototype of our system was already developed for

the REVENGE project in a completely different implementation language (Refine).

The existence of this functional prototype made conceptualization significantly easier,

we no longer needed to spend time trying to prove that our algorithm can deliver

results. The main objective was to prove that the algorithm can be improved by using

a whole new framework and design in a different implementation language. Based

on these ideas we captured the major functional requirements for a system using this

new framework, the new system should:

• have at least the core functionality of the prototype system,

• be developed in such a way so it would be able to accept, as input, code from
various “programming” languages,

• be compliant with the main architectural concepts of REVENGE so it can be
part of this larger cooperative environment,

• add new features and explore other possible improvements,

• be implemented in a commonly used object-oriented language,

• conform with various standards of object orientation (design and implementa
tion standards),

• be portable in all major hardware platforms.

Let us briefly analyze these core requirements and explain their rationale.

Duplicating the main functionality o f the prototype system

Functional compatibility with the prototype system was our primary objective, we

decided that in order to be able to evaluate our work a working system that could

be tested against our prototype should be developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SYST E M REQUIREMENTS 43

One main challenge was to maintain the efficiency of the algorithm in this new

implementation. Refine has a variety of built-in, optimized functions to manipulate

the AST that it creates. The algorithm for code segment localization is not very

complex, the most critical functions are actually those that traverse several different

structures and perform element retrievals or comparisons. Obviously the most diffi

cult part would be the design of new structures and the implementation of algorithms

for their manipulation.

What exactly we mean when we refer to the main functionality of our prototype

is the ability to localize segments of “code” based on an abstract description of these

segments.

Accepting different kinds o f input-“source code”

Our prototype proved the capabilities of the algorithm, the idea that stimulated this

research however was that the same algorithm based on a more generic framework

would be able to perform similar tasks with a variety of inputs. The initial input

is code in some “programming” language (C, Pascal or even HTML). The only con

straint is the existence of some kind of structure in the language so it would be

feasible to create a meaningful intermediate representation fit to use with the algo

rithm. When we refer from now on to “source code” we mean any possible structured

input and not only the artifact of a specific programming language. Thus the terms

input and “source code” are interchangeable.

The rising issue here is to find a formal way of representing the input, capable

of capturing all our target domains (languages). The use of various intermediate

representations is common practice in all reverse engineering systems that perform

design recovery as we saw in the previous chapter. The basic advantage of any

intermediate representation is the ability to capture only the aspects of the “source

code” that are significant to the analysis performed while ignoring any other elements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 3. GATHERING SYST E M REQ UIREMESTS -1-1

that may slow or clutter the analysis. Unfortunately there is no consensus on an

intermediate representation but there is a wide adoption of ASTs (Abstract Syntax

Trees) as a form of intermediate "source code" representation.

ASTs represent “code” in a structured way allowing on the same time annotations.

Thus users can adorn each code element, represented as a node in the AST. with the

attributes they deem necessary for their analysis. The s-cxpressions formalism was

used for describing the building blocks of our AST. The decision to use s-exprcssions

was unavoidable because of the next core requirement.

Com patibility w ith REVENGE

REVENGE, as we already described in the previous chapter, is a powerful environ

ment for cooperative reverse engineering. We share the common strong belief among

many researchers in the reverse engineering field [60, 69, 55] that in the future the

ability of any CASE tool to cooperate with other tools as a part of a larger integrated

environment will be a critical factor for its success.

Our experience building and using REVENGE proved that such cooperation is fea

sible. Conformity with a global schema and adoption of formalisms for the exchange

of data between tools in the environment was the solution proposed in the REVENGE

project. The experiences we acquired from our involvement in this project led us to

choose the formalism to create our intermediate representation and also guided us to

several important decisions about the system design.

To create the object oriented AST, which will serve as our intermediate “source

code” representation, we had to have a parser for our input. It was clear to us that the

main focus of this research is not to build parsers for all possible target languages (i.e.

C, Pascal or HTML). Other tools in the REVENGE environment, namely Ariadne,

provide specialized modules to accomplish this task.

Using Ariadne for the parsing permitted us to focus on our main research topic,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SY ST E M REQUIREMENTS 45

the design of a generic framework. To create the AST we need to get from Ariadne

directly, or indirectly from the repository- (Telos), a description of each node using

the standard formalism in REVENGE (s-expressions) and then reconstruct an image

of Ariadne’s AST. As we mentioned earlier the communication module used to send

and receive information from the global repository as well as the facility to dump

Ariadne’s AST in s-expression format already existed and were parts of the writer’s

work for the REVENGE project.

Extending our prototype

In addition to the conception of a system architecture that can handle several different

“code sources” we tried to explore other possibilities for our system such as ways of

improving functionality, flexibility and user friendliness.

All systems that perform concept recognition depend on some sort of feature

comparison, ours is not an exception to this rule. However the ability of adding new

features or changing the feature comparison method is not usually supported by most

systems mainly because of their rigid design. The design of our system allows such

changes by incorporation of add-on (plug and play) modules. Creating these modules

is a low effort programming task.

Another frustrating issue for end-users is usually the learning curve necessary

for a productive usage of the system. In most systems performing design recovery,

new language or formalism is introduced to describe patterns. This is of course a

necessity and can’t be avoided in systems that need to have some sort of plan-concept

description. Learning to use all these queryTanguages in an effective way can be a

time consuming task. To improve user friendliness and ease-of-use a powerful and

intuitive user interface was built to be part of our system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 3. GATHERING SY ST E M REQUIREMENTS 46

Im p lem en ta tio n language, po rtab ility , conform ity w ith s tan d a rd s

The design of our cooperative reverse engineering environment was based on a com

mon domain model which was shared between all tools and also served as the schema

for the centralized repository. A substantial amount of work was devoted to the ef

fort of creating this domain model and the result was an extensible design of several

metaclasses and classes that could be used.

We spent time going through this design again and we felt confident that the

new' system in order not only to be compliant with REVENGE but also with current

trends in software development should be implemented in a popular and powerful

object oriented language. We chose C + + mainly because of our previous experience

with it.

Another concern for us was the development process itself. We considered a great

opportunity to put in action new methodologies for object oriented development. We

decided to adopt a general framework for our process and adhere to coding standards

so we can ensure extensibility and maintainability of our system.

Portability was another related issue, one of our main concerns for the success of

our prototype was that being based on a commercial and not quite wide accepted yet

implementation platform (Refine) it would be really hard to evolve and maintain. An

implementation of the system using an object oriented programming language like

C + + would help us to overcome these problems.

The above mentioned requirements are also the major constraints and measures

of success for our system. In the next sections we will describe how we attacked the

problem trying to satisfy all these core system requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

* CHAPTER 3. GATHERING SY ST E M REQUIREMENTS 47

3.3 Analysis

Among several methods to facilitate system analysis proposed in the literature, we

chose to adopt the use-case analysis method introduced by Jacobson because of its

intuitivencss and effectiveness.

According to the use-case analysis method, all affected project members come

up with possible scenarios fundamental to the system’s operation. These scenarios

collectively describe the system functions. Analysis then proceeds by a study of these

scenarios to : identify primary function points of the system, group function points

into clusters of functionally related behaviors and generalize primitive functions to

create higher level abstractions.

The following section presents some possible scenarios for the system, mainly on

the design recovery realm.

3.3.1 A view of the problem

The purpose of the following paragraphs is to present possible cases where our system

could be used to handle problems which can’t be easily solved using existing tools.

Let us examine a few possible scenarios.

First scenario: Identifying error prone code

In legacy systems when a part of code is identified as error prone usually main-

tainers try to discover similar or identical code in other modules of the system. The

problem that arises in this case is that the identified code might be slightly altered

in other modules. Variable names might be changed, comments added or even the

sequence of commands altered.

Second scenario: Identifying common source code patterns

It is often the case that the legacy system we need to reengineer is based on a

proprietary language. Usually in this case the maintainer has access to other forms

of code representation and secondary information about the system (i.e. control and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS •IS

data flow diagrams). The task is to understand the system module by module using

accumulated knowledge of the system. Tools to aid engineers in their task using

only secondary information rely heavily on identifying common source code patterns

between modules.

Third, scenario: Training

While learning a new programming language students learn to categorize language

commands based on their functionality, they learn for example that a while statement

is a special case of an iterative statement. High level algorithms arc consequently

introduced and the students are asked to implement them. Following this logic it

would be beneficial for the student to have a tool able to recognize pieces of code

that can be described by a certain abstract code pattern.

Fourth scenario: Software migration

In the process of changing the design of a system from procedural to object ori

ented maintainers need to identify key data structures and functions that manipulate

these structures. Performing this kind of exhaustive searches in a multi-million line

legacy system is surely not a trivial task. If the analyst can come up with the neces

sary information (i.e. data structure definition and key functions using this structure)

then he can explore possibilities for code parameterization and class creation.

3.3.2 Use-case analysis

People in all the above scenarios share a common problem in different levels. Wo

will attempt to analyze these scenarios to detect common entities and abstractions,

this is a common approach followed for the creation of frameworks. For this task we

adopted the process suggested by Schmid in [53], according to this method systematic

construction of frameworks can be broken down to the following steps:

1. perform domain analysis with an aim to identify the fixed aspects that are
common to all applications from the domain - called the frozen spots, and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING S Y S T E M REQUIREMENTS 49

variable aspects, in which different applications may differ - called the hot spots
of the framework,

2. derive a specialized model by an object-oriented analysis from a specific appli
cation or configuration of the domain,

3. generalize this model by a sequence of transformation steps one per hot spot.

The next paragraphs identify possible frozen and hot spots in the scenarios.

In all the scenarios we have an initial source of information, but with some impor

tant differences. In the first case our input is source code from a legacy system, the

maintainer is probably familiar with the language and if he is lucky the source code

is also well documented. We can say that it is a typical case of “rich” input which

suggests a lot of capabilities for analysis. The second case is different, the input is in

a proprietary language or may be in an intermediate representation of this language.

The analyst is not probably very familiar with neither, but he has access to a domain

expert and several analysis tools. In the third scenario the “analyst” is not familiar

with the language a t all and is actually going through a learning process. Lastly in

the fourth scenario the analyst is quite familiar with the source code language and

the functionality of the system.

The input or “source code” form is not the only interesting element in these

scenarios, let us observe the desired result. In the first and fouth case the analyst

has identified the part of the code that interests him/her and just wants to find all

possible occurrences of functionally equivalent code. In the second case the analyst

has probably recognized a few critical parts of the code, each one has a discrete

functionality and combinations of them implement a larger logical task. The required

task in these cases is the localization of these code segments. In the third case the

“analyst” has for a informal description of a logical concept with which he could

localize and observe actual implementations of this task.

Finally the missing link in all the scenarios is of course the system that could

deliver the desired results. We will try to summarize our observations from these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C H APTER 3. GATHERING SYST E M REQUIREMENTS 50

scenarios by answering some simple questions :

1. What might be the input of the system : Any structured ‘‘source code”, either

complete logically and physically or even incomplete or partial (frozen spot.).

2. What is the primitive tasks the system should perform : The basic functionality

is source code segmentation and localization of an abstractly described code

segment in the code. Combining code segments will solve the more complex

cases of concept localization (frozen spot).

3. How does the user describe a segment : This is on purpose the only issue

not mentioned explicitly in the scenarios presented. As we can sec in the first

scenario the user has the actual statements in front of him and can use them

as guidelines to describe what he actually is looking for. In the second scenario

the analyst has only a partial description of what he wants . This partial

description most probably will focus on specific properties that the segments

or tasks should have ignoring small implementation details. In the third case

assuming a given example in natural language or pseudocode the “analyst”

should come up with a generic description of the task. The level of familiarity

with the language used in the programs also varies.

4. In what form are the results presented to the analyst: Since detection of log

ically equivalent code is not possible with absolute certainty, the analyst is

presented with a similarity measure indicating the system’s belief that the ab

stractly described code segment is logically equivalent with the reported source

code segment. The calculation of this measure is based on feature comparison

between the two pieces of code (query and actual source code). Partial plan

recognition is also possible and acceptable.

It is obvious that the analyst should have the ability to describe a segment either

in extreme detail or in various degrees of abstraction. A way to achieve this is to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SY S T E M REQUIREMENTS 51

provide the analyst with an Abstract Concept Language (ACL) [26] to describe the

code segments. The ACL language should use keywords similar to the target (input)

language so that it would be easier for the analyst to describe a concept just by

looking at an instance of it in the source code that implements it. Thus the code

description varies depending on the target language and can be characterized as a

hot spot.

As Booch notices [6][p.252] analysis is impossible to be completed before design

commences. With the information we have at this point we can form a first generic

design of our system.

Results

ANALYST

Mediator

Ariadne

Global
Repository Graphical

User
Interface

Code
Segment
Localizer

■g;: Flow o f information
in ^-expression format

Query

Abstract
Concept
Language

Code

Figure 3.2: General view of the system.

We can divide the system into two major components. The first component

is responsible for supplying the system with the necessary information to build the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS

AST and an abstract description of the code segment we want to localize. The second

component consists of the main program that implements our algorithm (munelv the

Code Segment Localizer or simply CSL) and a graphical user interface (GUI).

3.3.3 Hardware and software requirements

The system was implemented in an IBM RS/6000 workstation using the AIX oper

ating system. As the reader can sec in figure 3.2 the system uses several tools. The

vital part of the system however is the CSL module and the GUI. Both these modules

are developed using languages which are portable to all commonly used platforms.

CSL is implemented in C + + and the GUI in Tcl/Tk.

Tcl/Tk was chosen as the GUI development language for two reasons: its portabil

ity and most importantly our prior experience using it in various projects. We found

Tcl/Tk to be an excellent rapid application development tool, using several library

extensions of Tcl/Tk we built a robust and intuitive GUI to facilitate interaction

with the system.

The CSL module uses Lex and Yacc for the parsing of the input (s-expressions

describing the AST and the query describing the code segment we are looking for).

All the above mentioned third party programs are implemented for various platforms

and our modules do not have any specific hardware requirements. As a result we can

claim that our system ;s.Dlatform independent.

3.3.4 Analysis conclusions

In order to test the framework we built a system which can be used to assist the ana

lyst in the design recovery process and the concept assignment problem [4]. In other

words the system assigns a physical location, in the source code, to an abstractly

described concept in a query. The process of recognizing large-grain, composite con

cepts or plans requires that we first recognize the elemental concepts which form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3. GATHERING SYST E M REQUIREM ENTS 53

the larger concept. The system will have the ability to recognize this fine-grained

concepts and then, using an inclusion mechanism, put them together to form and

subsequently recognize larger-grained concepts (hierarchical recognition).

The primitive operation to complete the task we just described is code segment

localization. The analyst supplies an abstract description of one or several code

segments expressed in a language with the same low level representation as our inter

mediate representation of the initial input-“source code”. We reconstruct the AST,

which is the intermediate representation of our “source code”, given the s-expression

description of its initial nodes either from the global repository through our mediator

module or directly from Ariadne. The CSL module then tries to locate the specified

segment abstractions in the AST and reports successful attempts to the analyst using

the GUI module. Each result reported provides the analyst with the exact location

of the code segment in the “source code” and a probability indicating our belief that

the given abstract description matches the code reported. To calculate the result

our matching algorithm compares the formal, structural features of the code segment

pattern described by the analyst with parts and their corresponding features of the

reconstructed AST.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Framework D esign and

Im plem entation

In the previous chapter we described what a system based on our generic framework

will do. The purpose of this chapter is to analyze how the system performs the

specified task using the new framework. The major design issues which had to be

resolved, for this generic framework, are :

• the low level representation of the AST and the query-concept description,

• the Abstract Concept Language,

• the main code localization algorithm,

• meaningful result forms and

• human interaction with the system.

We must remind the user tha t our most important constraint was the second

core requirement specified in the analysis phase: the system should be capable of

performing its main task with inputs expressed in different languages with minimum-

effort changes in the code using the same framework. In the following sections we

describe the adopted design strategy to resolve all the main issues mentioned.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 55

4.1 Code and Query low level representations

Ever}' language consists of a set of basic constructs. In C for example we can have

iterative or conditional statements, in HTML on the other hand a paragraph or

a sentence can be considered a basic construct. Using a domain model for each

language which captures the language’s basic constructs and features, it is possible

to abstractly represent “source code” in this language.

We call domain model a set of classes that capture these primitive-basic constructs

of a language. Using the domain model adopted for the REVENGE project, “source

code” is parsed in Ariadne and an annotated AST is constructed. Each node of the

AST is an instance of a class defined in the domain model. Examples for the C

language can be : a Function-D efin ition clnss or an I f .S tatem ent class.

Domain models are treated as hot spots in our framework. For each possible

target language for the system a new domain model should be created. The most

difficult part in creating the domain model is to identify the crucial basic constructs

of a language and possible abstractions of them. Virtual functions that need to be

implemented in the base classes of a new domain model will present similarities to

the ones implemented for the C domain model. As a result we expect the necessary

amount of effort required to come up with a domain model for a new target language

to decrease significantly for any subsequent target language.

Assuming we have a parsing facility for the new target language, like the one

provided by Ariadne for C, one can use its domain model to create an AST for

“source code” in this language.

Our system receives a description of the nodes of the AST created by Ariadne

in s-expression format and then reconstructs a simplified AST using a subset of the

original domain model. If the target language has few basic constructs then adopting

the whole domain model for concept recognition is not a problem. In cases like C or

Pascal, which have large domain models, we can perform the task of concept recog-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 56

nition using a "lighter" version of the domain model which “ignores" some classes In-

keeping their superclasses. The analyst can still refer to the missing classes by using

their superclass thus achieving abstraction which is a key coucept in design recovery.

When choosing which classes can be omitted one should remember that a certain

degree of expressiveness is necessary in order to be able to have a meaningful inter

mediate representation. The designer should make a compromise between a “lighter"

- easier to use domain model and a more expressive but less abstract domain model.

As we saw in chapter three the “source code" and querv-code description given by

the analyst use the same low level representation.

Having the previous observations in mind, we will now describe our framework

for the “source code" and query low level representations. The system implemented

using this framework accepts C code and thus all the examples from here on will

be based on C and for some of them we will show possible extensions with other

languages.

The basic framework superclass is called the S ta te class and serves as the super

class for the classes in all domain models. The S ta te class captures the necessary

common attributes of all classes in a domain model. It has for example an identifica

tion attribute in which an identification string for every node in our AST is stored and

a type attribute used to indicate the domain model a descendant of this superclass

belongs. The S ta te class also defines several virtual functions, implemented differ

ently in every language domain model (i.e. the traverse-tree function which traverses

the reconstructed source code AST).

Each domain model should have one superclass which captures the common at

tributes of its descendants for the specific language, for C we call this superclass the

C_State class. Such a superclass serves mainly as an abstract class capturing features

and functionality common to all classes in its domain model. Member functions of

this superclass are mostly related to the code localization process. Descendants of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FR AM EW O RK DESIGN AND IMPLEMENTATION 01

superclass are all the classes in the domain model representing the basic constructs of

the language or their abstractions (i.e. For_Statement class. Iterative_Statement
class).

In order to describe and recognize a code segment or a concept we rely on some

formal, structure oriented pattern of features. The next few paragraphs describe how

our framework captures possible features. Every language might introduce its own

features, we can recognize two categories of features : features common to all classes

in the domain model of a language and features particular to some classes only in the

domain model of the language. A class called Feature serves as an abstract class for

all classes describing features in any language.

For the C language we define a new class called C_Feature which is derived from

the Feature abstract base class and acts as a feature container class (see figure 4.1).

Any object can have a number of features which are stored in a list. Each element of

this list (i.e. a feature) belongs to a class called the Feature-Item class. Four classes

describing features common to all C basic constructs, namely U sesJJescrip tion ,

Defines_Description, Keywords_Description and M etrics_D escription. Instances

of the Uses_Description class store the variable names used in a basic construct.

Def ines_D escription objects store the variable names set in a basic construct and

instances of the Keywords-Description class store all identifiers occurring anywhere

in the basic construct. Finally objects of the M etrics_D escription class capture

the values for the five metrics calculated by Ariadne for a basic construct. A feature

unique to only one class in the domain model will appear as an attribute of this class.

If we wish to add a new feature for a language we just have to create a new

class for it, make this class a descendant of the Feature_Item class, and update

the feature comparison algorithm to include the new feature. If we introduce a

whole new language then in its domain we must specify a new abstract feature class

(HTML-Feature for example) and then define classes for its new features which will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION

be subclasses of the Feature.Item class. The feature comparison algorithm depends

on the low level representation of the features (i.e. simple string comparison) and

can be the same as the one used for C or altered depending on the form of the new

features. Classes in resulting framework are grouped in libraries and can be reused

and incorporated to new systems.

In figure 4.1 we show part of the framework used for the low level representation

of the AST and the code segment abstract description using the Booch notation

described in [6].

4.2 Abstract Concept Language

In order to retrieve code segments based on the function they perform, a concept

language is introduced and used as a query language. This language can be either

generic, so that it could be used for any programming language, or specialized for

each target language. It is our belief that in order to be able to capture the most

important features of various languages (e.g. HTML, C, Pascal) a specialized concept

language for every target language should be created. Thus the creation of a concept

language is a hot spot in our design. Languages like C and Pascal might of course

share the same concept language, or parts of it, as they resemble semantically and

syntactically . For reasons well known in Information Retrieval, partial matching

should be possible when queries are formulated with such concept language.

Going through the literature one can see that there is no consensus on the way a

language capable of describing concepts should be created. Our experience with the

Refine prototype was reported in [26], the elements of an Abstract Concept Language

(ACL) we deem necessary are:

• abstract statements (5) able to describe all basic language constructs,

• don’t care statements (DCS) that can match any language construct and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FR AM E W O RK DESIGN AND IMPLEMENTATION 59

State

Feature
/ s - ~ '

r
\ C State ' V C- Fcature

 Ik.....................

• Do_State » -------
x Uses_Description;

< t ' \ f **'-•» ^Metri (^Description^
• If^State »

J Defines_Descriptioii \

^Keywords.Description j

C Language Domain Model

V Abstract Gass

— ►- Inheritance

• ----- Has relation
O— Using relation

Gass

,* v _"v <•

1 Featuie_Item ,

\ HTM L_Featurc'\ HTML_State N;
’ •"

: : : r x :
\Page_StatC'

t*Paragraph_State„'

\ Link^Descripdonj

'Applct.Descriptionj

HTML Domain Model

Figure 4.1: Main system class design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 4. FR AM E W O RK DESIGN AND IMPLEMENTATION GO

• macros (M) to facilitate hierarchical plan recognition [13].

We consider these to be the minimum requirements for a sufficiently expressive

concept description language. The language can also be adorned with typed variables,

operators or any other features the developer judges useful.

Don’t care statements are necessary* because they can be used as “‘gluing’’ material

among fine-grained abstract concept descriptions in order to express a larger-grained

concept (hierarchical recognition). In our implementation for the C language we

provide three don’t care mechanisms in the form of two abstract statements:

1. the *-$tatement,

2. the -h-Statement and

3. the empty feature value.

The empty feature value denotes a match with any feature vector obtained from

a candidate code fragment to be matched. The *-Statemeni will match zero or more

code segments of any type, while the +-Statement will match one or more code

segments of any type. If the analyst specifies features for these don’t care statements

then only code segments of any type which have these features will be recognized.

Existence of macros in the language allows the analyst to refer to plans to be

included a t parse time in a query, in order to describe a larger concept. For example

the analyst can say :

SO U RCE: another-plan-filename

inside a query. This will result in inclusion of the plan, described in the file with

the specified filename, inside the currently described plan. An example of a query in

ACL for C follows:

I te ra tiv e -S tm t
: abs-exp-desc

keywords : £?element]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FR AM E W O RK DESIGN A N D IMPLEMENTATION 61

*-Stmt
abs-gen-desc

empty;

Assignment-Stmt
abs-gen-desc

uses : [list,?element],
defines : [head,?element]

>

Using this query we can locate all iterative statements which have an assignment

as the last statement in their body. We also specify that the assignment statement

should use a variable called list, define a variable called head and both use and define

a variable, which should also appear in the condition of the iterative statement and

has the symbolic name, ?element.

The use of query variables (identifiers preceded by a question mark also called bind

variables) is a feature we found quite useful in our prototype and which is also part

of our implementation of the ACL for the C language. A more detailed presentation

of ACL as well as several example queries, can be found in appendices A and B.

4.3 M ain code localization algorithm

Based on the requirements and decisions analyzed in previous paragraphs the design

of the main CSL module was completed. In Figure 4.2 we present a high level scheme

of the Code Segment Localizer module.

_ The input to the CSL module, as shown in figure 4.2, is the location of two files.

The first file is the collection of s-expressions describing the AST for the source code.

The second file contains the abstract description of the code segments we want to

locate expressed in ACL. The AST description file is passed to the s-expression parser

submodule which parses the file and creates an object for each s-expression in the file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. F R A M E W O R K DESIGN AND IMPLEMENTATION 62

Input& Query
Filenamesio -----------

Code
Segment
Localization
Results____

Code Segment Localizer

n

_ _ i

C Domain
Model

S-expression Parser
Module

AST Reconstruction
 Module

Comparison Engine

Pascal Domain
Modct

HTML Domain
Model

Domain
Models

, HTML Query Parser
Pascal Query Parser

ACL Query Parser
Module

C Query Parser

Figure 4.2: The CSL Module.

These objects are then passed to the AST reconstruction submodule. The purpose of

this submodule is the creation of the source code intermediate representation for our

tool which is again an AST. We will use the Tc symbol to refer to this AST. To create

the Te AST we need to use the classes in the domain model of the target language.

The AST reconstruction module works in the following way, the s-exprcssion file

describing the source code is parsed and for each s-expression a generic object is

created. The resulting objects are stored in a “fiat” linked list. In the second phase

of the AST reconstruction process starting from the Function. Definition objects we

build the sub-AST for each function in the system and a t the end we gather all these

sub-ASTs in a linked list which is the simplified AST wc are going to use for our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 63

The creation of sub-ASTs is rather interesting, starting from a generic object

describing a Function Definition object we create a new object using the constructor

of the corresponding class from the language domain model (i.e. Function_Def .S ta te

class). The next step after the creation of any object in the AST is to scan its

“source’1 generic object for attribute values and update the attributes of the new

object. If some attribute value is a reference to another generic object then a binary

search algorithm is used to locate the referenced generic object in the linked list and

the process of object creation and update is invoked recursively. For example after

updating the simple feature values of a FunctionJJef jS ta te class we have to set the

function body attribute of the object; this attribute is a reference to another generic

object with a unique id. Using this unique id we retrieve this generic object and

create a new “specific” object depending on the generic object’s type. The generic

object’s type is specified as the value of its base class in the domain model used to

create the original AST. Having adopted a lighter version of this domain model we

can map all the originally used classes to some class in our domain model.

For large systems the AST reconstruction process is by far the most expensive

time wise. Let N0 be the total number of s-exprfc$sions describing objects and Na

be the total number of attributes of these N0 objects, then N = Na + Na is a

good approximation of the total number of objects in our final AST. The cost of the

creation of each intermediate object is 0(1) (just a simple sequential read from a file).

The creation of the final AST object from its intermediate representation will cost

at most the number of the object’s attributes multiplied by logiV0 , because logAk is

the cost of a binary search in the sorted list of intermediate objects already created.

Thus the worst case cost would be a binary search for every intermediate object for

all of its attributes, this bounds our algorithm to be 0 (N 0 + N a logN0). In reality

the algorithm is much faster as it takes out of the remaining object list any object

that is located through the binary search and corresponds to an attribute. We are

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 4. FR AM E W O RK DESIGN AND IMPLEMENTATION 64

currently considering the possibility of avoiding the creation of intermediate (generic)

objects in order to speed up the whole process.

The file describing the query is parsed by the ACL query parser submodule. The

result of the parsing is again the creation of an AST (T0). Creating the Ta AST

requires the use of the classes in the same domain model used for to form the Tc

AST.

Both ASTs are then passed to the comparison engine submodule that performs the

actual localization task. Figure 4.3 shows a simplified view of the Ta and Tc ASTs

formed for the query presented in the previous section and a possible “matching”

piece of code.

Source Code AST ffc l

WmlcSuucmcm

i **hile_cooditfon
I .

Subtree Statement
«bllc_body

btotfc-tfricmemi

Legend

Object
Inhcritcncc

— Has-a relation

Abstract Class

AssignmenOtatementFunction_CalIStatcmcnt

Query AST [Tm]

Itcrati vc_S tfltcmcn I
|NJtentiv^.cai4Mcn

Iicrnivc_body t _ _
Subtree Statement

BlockS

Statement

<33*5^

Assjgnmcnt^Maicmem

Figure 4.3: Example Ta and Tc ASTs.

The algorithm used to match an abstract pattern described in ACL with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 65

intermediate representation of our “source code” is essentially the one described in

[26]. We will analyze the algorithm and focus on how it was mapped on our object

oriented framework.

The main steps of the algorithm after the creation of the ASTs are :

1. creation of a StatiC Model (SCM) specific to the target language domain model,

2. creation of a Markov Model from the ACL AST (Ta),

3. selection of candidate parts of the code to serve as initial points for the local
ization process and finally

4. invocation of a Viterbi [68] algorithm to find the best fit between the code
segment described and an actual code sequence starting at a candidate point.

4.3.1 The StatiC Model (SCM)

The SCM is a simple automaton that show's the possible decomposition of abstract

classes and “quantifies” the analyst’s belief about the ability of the abstract class

to “generate” a particular source code segment. A part of the SCM for the C lan

guage is shown in figure 4.4. As we can see an object of the I te r a t iv e Statem ent

class can be decomposed, or simply allowed to match, any of the three classes (i.e.

For Statement,Do_Statement and While_Statement classes), specified by the SCM.

Every possible decomposition is assigned a probability

PsCM = -PsCA/(Sj|Aj)

where 5, is a source code statement (i.e. For Statement) and A j is an abstract

statement description in the ACL query (i.e. Iterative Statement), indicating the

analyst’s belief about its possibility of appearing in the code. This probability can

be :

• given by the programmer as part of the query,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. F R AM E W O RK DESIGN AND IMPLEMENTATION 66

• supplied by the system using a uniform distribution based 011 the number of
choices (current implementation) or

• it can be calculated dynamically at run time based on the matches obtained so
far.

These probabilities on the SCM are used later in the calculation of the concept-to-

code distance or similarity measure and can be easily changed if necessary. In the

initial implementation of the algorithm, the SCM was also used for type checking.

The new implementation does not rely on the SCM for general type checking.

Iterative Statement

i 0.33
FOT_Statement^) (^W trile_Statemen t^) (^Do_S tatem ent^)

Figure 4.4: Part of the SCM describing the Iterative Statement “decomposition” .

4.3.2 The pattern matching process

The following three sections describe in detail the core methodology used to perform

pattern matching of features among nodes in the Tc and Ta ASTs.

Markov M odel creation

The existence of abstract (e.g. the Iterative Statement) and don’t care statements

(e.g. *-Statement, +-Statement), in our ACL, allows generation of many possible

code segments from a given query expressed in ACL. Markov models provide an

appropriate mechanism to represent these alternatives [52].

A Markov Model is a source of symbols characterized by states and transitions.

Two special states exist: the starting state and the final state. The starting state has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 67

no incoming transitions and the final state has no outcoming transitions. A model

can be in a specific state with a certain probability. Each state has a finite number of

transitions leading to other states each associated with a certain probability. Tran

sition from one state to another state can only happen when a “symbol" associated

with a valid transition is recognized and “consumed’'. Generating a Markov Model

for the query AST Ta allows the subsequent use of the Viterbi algorithm to calculate

the sequence of transitions which maximizes the total probability of a path beginning

at the starting node and ending at the final node of the model. The path corresponds

to the matching between Ta and Tc.

Using the query’s AST (Ta). the Markov Model is created dynamically by simply

traversing the AST. the building algorithm is simple. A transition is allowed and

added from each basic construct description node to the next node in the AST.

Star and plus statements (*-Statement, +-Statement) need special handling. Each

of the latter statements always has an outcoming transition which returns to itself.

Also statements preceding a *~Statement should have additional transitions to the

statement following the *-Statement (see figure 4.5).

We call the resulting Markov Model: Abstract Pattern Model or simply (APM).

The APM is actually implemented on top of the query’s AST by adding possible

transitions to the nodes of the Ta AST. That is the reason we refer to classes in the

domain model as States, as they also represent actual states in the APM.

An example of a simple APM is shown in figure 4.5, elements of the Ta AST are

omitted on purpose in order not to clutter the figure. For composite statements (i.e.

an I f Statement with then and else parts) the process of creating the APM is invoked

recursively. Each transition has an associated probability; all transition probabilities

are initialized to -1 before the matching process and this is the reason we chose to

omit then in figure 4.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 4. FRAM EW O RK DESIGN A.N’D 1MPLEM EXTATI0X

Function_Ca]]_StatemenT^

Assignment Statement

Figure 4.5: Example of dynamically created APM.

The localization algorithm

The first step For the algorithm is to locate the candidate starting points in the source

code AST Tc, this task is also known as source code segmentation or code delineation

and the algorithm used is the one described in [26]. The code delineation algorithm

has two main steps, first we locate all possible starting points based on generic criteria

(i.e. type compatibility) and then we refine the initially selected set of candidates by

performing a series of feature comparisons. In our implementation this second step

of the source code segmentation process is the initial step of the main localization

algorithm.

For the first step of the segmentation process we choose the first “concrete” state

ment S (“concrete” means that 5 can not be a don’t care statement) from our query

and locate all occurrences of statements which arc type compatible with 5 every

where in Tc. In order to ensure that all possible candidate points will be considered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW ORK DESIGN AND IMPLEMENTATION 69

;i generic cheek is used in this phase (i.e. type compatibility between the first "con

crete'’ statement in the query and a node in the source code AST) while traversing

recursively the source code AST. There arc however some special cases. If the query

consists only of various don’t care statement then we return all the logical blocks

as possible starting points, this decision was taken after careful consideration of the

most meaningful queries that can be constructed solely from don’t care statements.

Dynamic Programming match between concept and code A STs

At this point we have all the necessary input for our main localization algorithm. The

Viterbi dynamic programming algorithm is used to find the path that maximizes the

overall generation probability among all the possible alternatives formed by the APM

created for a given query. In the next paragraphs we describe the algorithm.

Let 5 i , S k be a sequence of program statements (represented as objects of the

Tc AST, occurring at a certain candidate starting point in our “source code”) and

A i,.., An be a possible sequence of states (also represented as objects of the Ta AST)

in our APM. Then a possible recognition sequence would be of the type:

S \ , .., Sgt , Sgt+l, .., Sgz, ..., + .., Sgi, ..., Sk— 1, Sk
*- -» V y /

Al A2 Aj

meaning that abstract statement description Ai matches statements : Si .. Sgi,

abstract statement description A 2 matches statements Sgi+i .. S92 and so on. We

call statements S „ Sg,, ... ,S* breakpoints.

The purpose of our algorithm is to find the most likely statement sequence S3t_l+i,

S9i that contributes to maximum similarity when combined with similar matches

of other states.

The matching process for a single statement and its abstract description can be

broken down into three discrete checks, failure in any of these steps terminates the

comparison process for the current starting point and causes a transfer to the next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW ORK DESIG.X A.XD IMPLEMESTATIO.X 70

possible starting point. Failure usually moans that the probability computed is less

than a user-specified threshold. The three checks performed are :

1. type compatibility check,

2. metric proximity check and

3. feature vector value comparison.

These steps performed for a candidate starting point are actually the second step

of the code delineation process described in [26], The metric proximity check can

be used when the comparison granularity is at the level of a begin-end block; the

formula used is described in the following section. For statement level granularity

we use dynamic programming techniques to calculate the best alignment between

two code fragments based on insertion, deletion and comparison operations. Rather

than working directly with textual representations, source code statements are ab

stracted into feature sets that classify the given statement. The whole process is

described in detail in a following section (i.e. section 4.3.4). Dynamic programming

is a more accurate method than the direct metric comparison based analysis because

the comparison of the feature vector is performed at the statement level.

Checking type compatibility is accomplished using information in the domain

model and the SCM if necessary. The possible result is a boolean value indicating if

the statements checked have compatible types. Statement type compatibility is given

• for simple statements: by comparing the type attribute of each object in the
query and the source code AST or

• by using the SCM if the query object is an instance of an abstract statement
class (i.e. Itera tive_S tatem en t class).

The euclidean distance of metrics is calculated and used as a comparison factor

in cases where the metrics are specified for the abstract description. The distance

calculated should be less than a certain threshold which can be set by the analyst.

The euclidean distance C is calculated using the following formula :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1. FRAM EW O RK DESIGN AND IMPLEMENTATION 71

CiVnSj) =
\

D W i) - W 5 ,-))2 (1)
k=l

Where 7^ is tlic i-th statemenf, after the current starting point in the "source

code’'. Sj is the j-th statement described in the query and .\fjfc(S) is the k-th metric

value for a statement S. To compute C we use the values of the five metrics computed

by Ariadne. If no metrics are specified in the abstract description of a statement in

the query then this check is omitted.

The result of feature comparison is a similarity measure of the segments being

compared. If S, is a composite statement then recursive calls of the functions per

forming feature comparison take place.

If for example 5, is a while statement, first a type compatibility check with its

possible description Aj occurs. The next step is to calculate the euclidean distance C

between the metric values of Aj and Si, using the previous formula, and then compare

C with the given acceptable threshold for metric distance. Absence of metrics for Aj

is interpreted as a don’t care value. Finally the similarity measure produced by the

feature comparison for the while statement itself is “combined” with the similarity

measures produced by recursive calls to the matching functions for:

• the expression used in the while condition and

• the statement describing the body of the while loop

to produce the overall matching probability. The calculation of the similarity

measure is described in the following paragraphs.

Similarity measure

Assuming a match between a sequence of source code statements S i,. .,5* and a

sequence of abstract code descriptions A i , An we need to compute a measure of

our belief for this potential match. For convenience let us use the same recognition

sequence as before :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGS AXD IMPLEMEXTAT10X

Si. ... S g l. S q, -L 1. ... Sp, _ j J. 1 5(j,.......1. Ŝi.

A i -h . u

What, we actually try to match is objects in the two ASTs [Tr and 7],). Thus a

possible measure of similarity between Tc and Ta can be the following probability:

Pr(TcITa) = Pr(r rc,- —re, |rai, ...raj. ...r(1J) (2)

where, (rCl. ...rCi, ...rC;) is the sequeuce of grammar rules used for generating T,.

and (r0,. ...r0;, ...raj) is the sequence of rules used for generating Ta. We will use an

approximation of this formula.

Using the Viterbi dynamic programming algorithm and the created APM we can

compute the probability:

-PrCS'si-l + l? $9i I*4 /(0) (3)

where

+ "i^9i

is a sequence of statements in Tc that can be matched by the valid at the i-th com

parison step abstract description -4/(i). To find possible alternatives for A/(i) one has

to calculate the reachable transitions in the APM at the i-th comparison step, this is

represented by the subscript f{ i). In order to be able to match several actual code

statements -4/(i) must be a : don’t care statement (i.e *~Statement or ^-Statement),

a composite statement or a macro.

Using (3), an approximation of (2) is possible [29, 26]:

Pr{Te\Ta) Fr (Si; ...4n) ~
k

_i+i> "i S g M m) (4)
«=i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 73

Formula (4) is essentially the result computed by the Viterbi algorithm. If .4^

is a reachable state in the APM at the i-th step, then:

n * (S U /w) (5)
/=<?.-l + I

In the case of a composite statement, a Markov model is considered for it and is

used in a similar way with the Viterbi algorithm. In general, the probability Pr(Si|.4j)

has to be computed.

The resulting probability expresses the belief that the code segment S,- in our

source code AST (Tc) can be described by the abstract statement .4y(z) in the query

AST (Tn). The actual value of the probability Pr for two statements is calculated

by multiplying the probability for the abstract description statement defined in the

SCM and the value we get from the feature comparison of the two segments. The

feature comparison formula is presented in the next paragraph.

Feature Comparison

The features the analyst chooses to examine depend mainly from the analysis he is

interested in. For the purpose of the analysis we perform in Ariadne we selected four

features. The set of adopted features, for a C language statement S in our system,

consists of:

• the set of variable identifiers defined in S (2?),

• the set of variable identifiers used in S (U),

• the set of identifiers-keywords appearing in S (JC) and

• a set of five real numbers which are the valu«*sTor the five metrics calculated
by Ariadne.

Metrics comparison is used, if metrics are specified in the abstract description,

as an initial testing step. If the euclidean distance calculated is bigger than a user

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 7-1

specified threshold the segments are considered different and the comparison process

stops.

Let Aj be a simple (i.e. non-composite) abstract description of statement. 5, in

the Ta AST, then the probability Pr(Si\Aj) in (5) can be calculated as follows:

... , _ 1 JU card iA bstrac tF catvrc^ n CodcFcaturc,,n)
conp i - j ^ £?l card{AbstTactFcaturCjjl \jC odcF caturc l'„)

We chose three features for C { T>, U and K.) and thus v = 3 in the above formula.

The total probability is equal to the sum of three fractions. Each fraction for T>,

U and K. is computed as the number of common identifiers for each pair of code

segment-query segment, divided by the number of the total different identifiers for

this pair. The final similarity measure for each transition

Pr(Si\Aj)

can then be computed as:

■Pr(Si|Aj) = PCcmp(5i|Ai) • /W S i.4 ,)

A full blown recognition example is presented in appendix C, the whole process

we just described is explained in detail using a typical query.

4.4 Result form

In the case of successful recognition of a piece of code abstractly described in the

query the analyst gets as an answer a set of locations in the source code for each

abstract statement description in the query in the form :

filename: starting-line, ending-line.

For each occurrence of the concept reported the system also outputs the overall

similarity measure calculated. The analyst can then manually inspect the code to

determine false alarms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FR AM E W O RK DESIGN AN D IMPLEMENTATION

If in our ACL query we described an assignment statement followed by a for

statement then a matching piece of code would be reported as follows :

MATCH PROBABILITY : 0.34
MATCHING CODE

LOCATED IN : sa.0:1787,1788 is ExpressionStatement_7364
LOCATED IN : sa.c:1787,1788 is ForStatement_7365

The strings following the location of the code (i.e. ExpressionStatement_7364,

ForStatement_7365) are the unique ids that identify the s-expressions used to describe

the matching source code.

4.5 Human interaction w ith the system

The analyst interacts with the system through an intuitive and extensible graphical

interface. Using the interface the analyst can perform three operations:

1. create a query using a graphical or a textual editor,

2. adjust threshold values used by the localization algorithm and

3. inspect the reported results.

The GUI module is implemented in Tcl/Tk and can easily be extended to achieve

greater functionality. An on-line help facility, in the form of explanatory balloons,

helps novice users to explore the interface.

4.6 System architecture

A generic view of the architecture of the main system modules is presented in the

next figure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

•n
<3
5

fp
O
8»
a.o
es*H •
(DOf tC
2.

I '
o
S'a

n
B

t Ariadne or Mediator s x
AST decomposition /
o~ in s-expressions /
. J - ' --------------------------

Graphical User Interface

i Analyst*^^ — ■■■■............. '•
\ Interacting with GUI or
' _ ju s t specifying query file-

Q uery

Building

Module

Presentation

M odule

Com m unication

M odule

Code Segment Localizer

Code
Segment
Localization
Results

C D om ain
M odel

A ST Reconstruction
M odule

S-expression Parser
M odule

: Flow o f information
in s-expression formal

Com parison Engine

H T M L D om ain
M odel

Domain
M odels

Pascal Q uery Parser

HTM L Query Parser

A CL Query Parser
M odule

C Query Parser

CH
APTER

4.
FRAM

EW
O

RK
DESIGN

AND
IM

PLE
M

E
N

TA
TIO

N

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 77

The archit.cct.ute of the CSL module has been already analyzed. In this section

we will briefly analyze the architecture of the GUI module and focus on the details

of the comparison engine submodule in the CSL.

4.6.1 The graphical user interface

The GUI module can be decomposed into three submodules :

1. the communication submodule,

2. the query building submodule and

3. the presentation submodule.

The communication module is implemented using the Expect package under

Tcl/Tk. When the GUI starts, this module takes control of the input and out

put channels of the C ++ program implementing the CSL module. All message and

data exchange between the GUI and the CSL module is performed using functions

in the communication submodule.

The query building submodule consists of a graphical and a textual editor. The

analyst can use either or both of these editors to create a new query. This submodule

is implemented using the Tix package under Tcl/Tk. The graphical editor allows the

analyst to write queries without prior wide knowledge of the grammar of ACL.

Finally the presentation submodule is built in and contains the necessary functions

that implement all graphics used in the user interface.

4.6.2 The comparison engine

Our initial idea and objective for the design of the comparison engine was to introduce

abstract base classes and virtual operations so that the comparison algorithm would

be dynamically determined a t run time based on the type of the entities compares (i.e.

Pascal programs, HTML pages, C programs). However the need for a comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CH APTER 4. FRAM EW O RK DESIGN AND IMPLEMENTATION 78

function specific to some statements still exists because certain statement, (classes in

the domain model) can have unique features. For example to compare two objects

that belong to the Function_D efinition class we need to compare not only their

standard features but their function names as well, the function name in this case

is the specific feature that has to be compared. Standard feature comparison is

implemented using one set of function for all the classes in a particular domain model.

Specific feature comparison is done using specialized member functions in the class

that defines this specific feature (i.e. Function_Def in i t io n class).

The design decisions adopted concerning the “distribution” of the algorithm among

the classes are:

• gather all generic functions (e.g. starLpattemjmatch, perfomi-pattem.matching)
in a submodule (we call this submodule: the C om parison Engine),

• implement the language specific functions (e.g. compute-probability,
check-type-compatibility, traverse.tree)as member functions of the generic state
class in the language’s domain (e.g. C-State, HTML-State),

• implement comparison operators for all classes having special features.

Following the first decision a new class was created and named : P a tte rn Hatch

Engine class. The main goal was to implement member functions for this class

capable of performing all the generic steps of the algorithm. If we could achieve

this the class could be used for all target languages for which we have specified a

domain model. Thus member functions of this class would implement the core of

our algorithm. The P a tte rn Match Engine class uses the StatiC Model (SCM)

to retrieve the PsC M probability (see section 4.3.1) and the two ASTs (i.e. query

and source code ASTs). They key idea to keep the P a tte rn Match Engine class as

generic as possible is to achieve AST manipulation through a common standardized

interface, this is achieved by allowing communication only with the S ta te abstract

class which defines this uniform interface for all classes in any domain model (see

figures 4.1,4.7).

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW O RK DESIGN AN D IMPLEMENTATION 79

Functions critical to the localization process are called from member functions

in the P a tte rn Hatch Engine class. These critical function handle - among other

things - the feature comparison, the selection of candidate starting points and the

calculation of the overall similarity measure. All these functions are hot spots in our

framework design, and as a result they will have a different implementation for each

target domain - language. Consequently if the source code is in Pascal the functions

defined in the domain model created for Pascal will be invoked where as if the analyst

focuses in C programs the appropriate function in C’s domain model will be used.

The binding is done dynamically in even," case.

Moreover the maintainer can define more than one functions to handle the above

tasks in each domain and choose which one to use at run time (plug and play capabil

ity). Currently, for example, we have two ways of doing the feature comparison, the

one described previously and a simpler method that we use for testing and validation.

The analyst can define in the command line or a t run time which one he wants to

use every time.

Figure 4.7 shows how the P a tte rn Match Engine class communicates with the

two ASTs (Tc and Ta) through calls to virtual member functions of the S ta te class.

Classes in any new domain model have to respect the interface defined in their ab

stract superclass (i.e. the S ta te class). Using dynamic binding functions in the

P a tte rn Match Engine class will invoke the correct function for the corresponding

domain model every time.

The two most critical member functions of ihePattem Match Engine class are:

1. the starLpattemjmatch function and

2. the perform,pattemjmatch function.

The starLpattemjmatch function is responsible for the initial steps of the algo

rithm, it calls a function to find all candidate starting points and then performs a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FR AM E W O R K DESIGN AND IMPLEMENTATION SO

Pattern Match Engine

R ature Compun\on Function

Camlklatr Selection Function

Similarity measure Calculation Function

State

' W — S r

StatiC Model (SCM) ACL Query AST Source Code AST

Figure 4.7: Simplified interaction diagram for the Pattern Match Engine class.

loop over all the possible starting points calling the performjpatteni-match function

for each one of them.

In the perform-patterrumatch function we traverse the T„ AST, using the APM,

and the Tc AST, and then call a language specific function (hot spot) to compute the

similarity measure of the active nodes in the two ASTs for every step of our traversal.

If we reach a final node in the APM then our comparison was successful and the

location and the total similarity measure are returned; if not, failure is reported.

The S ta te superclass (see figure 4.1), used as an abstract class for all domain

models, defines virtual functions implementing several parts of the localization al

gorithm . The actual implementation of these function is located in the language

specific superclass (e.g. C State , HTML^State). The C-State abstract class imple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FR AM E W O R K DESIGN AND IMPLEMENTATION SI

ments functions to:

1. check for type compatibility,

2. compute the euclidean distance of the five metrics using formula (1),

3. manipulate the domain model specific SCM,

4. calculate the similarity measure using formula (4) and

5. calculate the similarity measure for composite statements.

All these functions are implemented for the C language specific domain model. If

we choose another target language then in its domain model we should define similar

comparison functions which are specializations of the virtual functions (or operators)

defined in the S ta te class.

Finally for each class in the domain model a function called match-specific-features,

declared as virtual in the domain model superclass, is implemented to match unique

features of a class with their description in the APM state. For example an instance

of the Function^Call state class will define the name of the function called by the code

segment it describes; this is considered a unique feature and its comparison is handled

by the implementation of the matchspecificjeatures function for the Function_Call

state class.

A view of the design described in this section in the form o? a class interaction

diagram is shown in figure 4.8. In the diagram the reader can see the message

exchange between classes in the system. Note that messages in C + + are actually

function calls to class member functions.

4.7 Evolution and M aintenance

The design reported in the previous section is the result of several iterations over

the initial requirements and ideas for plausible designs and their implementations.

Chronologically, the s-expression parsing module was build first, followed by the the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM EW ORK DESIGN AND IMPLEMENTATION

• • • s

Figure 4.8: Simplified system interaction diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4. FRAM E W O RK DESIGN AND IMPLEMENTATION S3

Number of Functions LOC Number of related classes

S-expression parser 5 5 K 2

AST reconstruction module 155 3K 26

Domain Model (C) 240 8 K 32

Comparison Engine 24 3 K 3

ACL Query parser 6 3 K 2

Total 430 22 K 65

Table 4.1: Module sizes.

domain model for C and the AST reconstruction module. The implementation of the

ACL parser was the next step. Finally the comparison engine was built and several

member functions were added to the domain model classes in order to complete the

localization algorithm. The GUI module was created after a reasonably stable version

of the system was available. Table 4.1 presents some approximate numbers related

to the system’s size.

Recent work explores mainly two topics:

1. possibilities to improve the algorithm by introducing new low level comparison
methods and

2. adapting the design to accommodate new domains (i.e. HTML, structured
text).

Ideas and work to achieve these goals are reported later in chapter six section

one. Our experience during evolution and maintenance indicates that our approach

for the system’s design was robust. Additional functions are easy to incorporate and

most importantly debugging is fairly easy because of the modularity achieved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Experim ental R esults

This chapter discusses results obtained from our experiments. The first section briefly

describes the subject systems we used for testing the capabilities of the tool. The

next section focuses on the description of some concepts or plans we used. Finally in

the last section we present and discuss the results of our experiments.

5.1 The Subject System s

Testing a design recovery tool presents a major difficulty, the developer has to play the

role of the analyst and recognize concepts in a subject system; to be able to validate

the output of the tool the analyst must have a good knowledge of the subject system

functionality and design. To overcome the above mentioned problem we adopted the

following strategy. We chose as test cases :

• small size C programs for which we had complete knowledge of their design and
functionality ourselves,

• medium size programs for which we had access to their developers and

• large modular programs.

The two small systems are : a simple linked list manipulation program (around

two hundred Lines Of Code (LOC)) and a program simulating the popular card game

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS S5

“blackjack” (nine hundred and fifty LOC). These two programs although they are

small and simple they contain a number of programming plans (i.e. list traversals,

reading from files) as well as a number of “business rules” (i.e. how cards are dealt,

what is the value of the cards).

For the medium size programs we chose two systems created by the speech recog

nition group in our lab. The first system is a speech decoder using the Viterbi

algorithm on Hidden Markov Models (HMMs) [52]. The size of the speech recognizer

(called simply Recognizer from here on) is around seven KLOC. The second system

is the front end of a second speech recognition system developed in the lab. The sys

tem uses digitized speech samples as input to extract features relevant to the speech

recognition task, we call this system the Feature Extractor. The Feature Extractor

is around eight KLOC long. These two systems were selected because they contain a

number of mathematical computations and were typical representations of a specific

domain (i.e. speech recognition).

The choice of larger systems to be used as test cases was more difficult, we had to

find systems modular enough to ensure that a certain concept can be found only in

a small number of modules in order to facilitate validation of our results. Assuming

this fact we did not have to have a perfect understanding of the whole structure and

design of the system. To locate a concept we focused on one module, if the same

concept was reported found in other modules during our tests we checked the validity

of the result comparing the reported concept instantiation to the original concept

used to create our query’.

The first system chosen is NASA’s C Language Integrated Production System

or simply (CLIPS). CLIPS can be used as an expert system construction tool. We

found CLIPS modular enough for our needs and also familiar because of our expe

rience using it and analyzing it as a test case for Ariadne. Using Ariadne’s analysis

capabilities we had a fairly good knowledge of the svstem structure. The size of•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESLZTS

Subject system Code size Size of intermediate representation

List 1S1 LOC 50 KB

Twentyonc 942 LOC 322 KB

Recognizer 7 KLOC 2163 KB

Feature Extractor SKLOC 1014 KB

Clips 33 KLOC S770 KB

Tcsh 45 KLOC 9661 KB

Table 5.1: Physical size of subject system and their intermediate representations

CUPS is approximately thirty three KLOC. Finally we chose the popular Unix shell

Tcsh (Cornell version 6.06) as our second large subject system. Tcsh was also used

to test Ariadne and as a result we had a fairly good idea of its structure. The code

for Tcsh is forty five KLOC long. Both these systems are modular enough for testing

purposes and contain a wealth of programming patterns both generic and domain

specific.

Although the size of our test cases might seem small compared to a multimillion

line legacy system we believe that the design of our system can accommodate very

large systems as well. The input to our system is not the subject system’s code but

an intermediate representation of it using the s-expression formalism. The input can

be requested and sent from the global repository cr generated and sent directly from

Ariadne. The size of the files with this intermediate representation for the above

systems is reported in table 5.1.

For very large systems the analyst can process the intermediate representation

of the system module by module. Splitting the intermediate representation file is

possible using a simple text editor or directly by requesting from the repository only

s-expressions describing a specific system module. We have not encountered problems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS

even w ith ou r largest subject system but we believe th a t for perform ance reasons ii

m ight be b e tte r if the user sp lits the system into several m odules am i then tests each

one separately. T he v ita l issue of scalability can lie resolved using th is technique.

5.2 Measuring performance

Using for all the subject systems the queries that reported the minimum and the

maximum number of concept instantiations we obtained data regarding the time

performance of our system. Results arc presented in tables 5.2. 5.3 and 5.4.

By far the most expensive part, in terms of time always, is the parsing of the

s-expression file, which describes the source code, and the reconstruction process

that immediately follows the parsing. Impressive numbers were reported for the rest

of the activities. All of the remaining reported activities involve mainly navigation

through pointers which explains the reported - satisfactory results. Moreover, the

most important part of our algorithm, the main localization and feature comparison

process, performs very well even for our largest subject system (see table 5.4). Based

on this latter fact we believe that the main localization algorithm can be successfully

used for considerably larger subject systems.

5.3 Concepts and plans

This section analyzes our method of capturing and describing concepts used for our

experiments. As the degree of our familiarity with each subject system varies we had

to adopt different tactics for capturing plans.

For the smaller systems (i.e. List and Twentyone) full understanding of the code

was possible. Going through the code we discovered several pieces of code which

implement key concepts (e.g. the traversal of a list). Seeing the actual code segment

which implements a concept the analyst can then use corresponding ACL abstract

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER r,. EXPERI V E S T A L RESULTS ss

List Ql LiM Q2 Tircntyonc Ql Tmcntyonc Q2

AST reconstruction 0.1 sec 0.1 sec 4 sec 4 sec

ACL Query* parsing 0.1 sec 0.1 sec 0.1 sec 0.1 sec

Find candidates 0.1 sec 0.1 sec 1 sec 0.1 sec

Localize code 0.1 sec 0.1 sec 1 sec 0.1 sec

Candidates found 1 12 1 IS

Concept instantiations 1 12 1 IS

Stm ts in Query 5 3 6 2

Table 5.2: Time statistics (part I).

Recognizer Ql Recognizer Q2 F.Extractor Ql F.Extractor Q2

AST reconstruction 31 sec 30 sec 14 sec 14 sec

ACL Query parsing 0.1 sec 0.1 sec 0.1 sec 0.1 sec

Find candidates 0.1 sec 0.1 sec 0.1 sec 0.1 sec

Localize code 2 sec 3 sec 1 sec 8 sec

Candidates found 204 204 ‘ 103 689
Concept instantiations 1 77 2 216
Stmts in Query 9 5 5 3

Table 5.3: Time statistics (part II).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER .5. EXPERIMEXTAL RESPITE

CLIPS Ql CLIPS Q2 Trs/i Ql Tr.'th QJ j

AST reconstruction j 1366 sec 1367 sec 1547 see j 1552 sec

ACL Query parsing 2 sec 1 sec o 1 o 2 sec | 2 see

Find candidates 10(1 sec 99 sec 312 sec 188 s»*e

Localize code 153 sec 248 sec 111 sec 196 sec

Candidates found 1890 1S90 4209 2730

Concept instantiations 9 233 •> 199

Stm ts in Query 7 8 9 3

Table 5.4: Time statistics (part III).

statements to describe it. We found that in most cases the use of the graphical query

builder speeds up the whole process significantly.

To locate and describe concepts for the medium size programs we relied mostly on

their developers. We asked the developers to show and explain to us code segments

implementing various key concepts. Moreover, we asked them to abstractly describe

these concepts in terms of the query language and point all their occurrences in

the code they were aware of. The final step was to refine the developer’s concept

description to make full use of ACL features.

Probably the hardest part was to identify concepts for the larger subject systems.

To accomplish this task we relied heavily on system decomposition performed by

Ariadne [21] and also on comments in the code itself. As we will sec in the next

section we need to know exactly how many times a certain concept occurs in the

whole system to report meaningful precision and recall results. To overcome this

obstacle we relied on the subject system’s modularity and checked reported concept

instantiations outside our target module manually.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS 90

5 .3 .1 H ierarch ica l c o n c e p t fo rm a tio n a n d r e c o g n itio n

Hierarchical concept reco in it ion refers to th e ab ility of recognizing com plex concepts

from sim pler ones. In th is section we present an exam ple of m acro usage to move

from fine-grain concept, or sim ple code segm ent, descrip tion to Iarge-grain concept

descrip tion and localization. To illu s tra te th is we will use a concept from th e Recog

nizer.

The Recognizer uses a Yiterbi based algorithm on Hidden Markov Models to cal

culate a maximum likelihood transition sequence among the Markov Model states

that represent phonemes. The following piece of code performs the calculation of

a state’s contribution in the resulting path. The first line initializes the total con

tribution of a transition to a constant minimum value. The loop starting in line

2 computes the contribution for all possible transitions between two states in the

Markov Model. Initially (line 3) a check occurs to see if a probability for a certain

transition has already been computed. If the result of the check is negative then the

probability for this transition is computed (line 4) and a flag is set (line 5). The

statement in line 7 checks if the calculated contribution is greater than the accumu

lated total contribution, if so it updates the total contribution value (line 8). The

next line (9) advances the pointer to point to the next transition between the two

states examined. Finally the last two statements (lines 11 and 12) keep track if a set

of transitions has already been processed by setting an appropriate flag and using

the accumulated total transition probability.

1 p = L0GZER0;
2 do {
3 if (! (distTested[idx = TrP->DistrIdx])) •[
4 DistrVal[idx] = EvalDistrC&DistrList[idx],obs);
5 distTested[idx] = TRUE;
6 >
7 if(p<(contribution=TrP->Prob+DistrVal [idx]))
8 p = contribution;
9 TrP++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS 91

10 } while(++i < *nextMix);
11 *mixTested = TRUE;
12 mix->Value = p;

Source code implementing a plan in a subject systcjn [Recognizerj

The above presented code can be broken down to several smaller (fine-grain)

concepts or plans. Based on their functionality lines 3 to 6 can be considered ;is

one smaller concept (concept 1). The code segment starting from line 7 and ending

at line 9 can be considered as a second plan and is called concept. 2. Lastly the

assignments in lines 11 and 12 implement another concept (concept 3). Assuming

this decomposition the larger concept can be described by the following ACL query:

©

Assignment-Stmt
abs-gen-desc

defines : [?p];
Iterative-Stmt

(abs-gen-desc
uses : [?TrP],
defines : [?DistrVal])

(abs-exp-desc
Keywords : [nertMix])

{
abs-gen-desc

empty
SOURCE : "concept1"
•-Stmt
abs-gen-desc

empty;
SOURCE : "concept2“
•-Stmt
abs-gen-desc

uses : [TrP]
>
SOURCE : "concept3"

«

ACL Query describing a large-grain concept

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER r>. EX PER I ME S T M RESULTS 92

()f>s(Tv<“ the (»f the S O U R C E m acro as well as the use of don 't carp s ta te

m ents (i.e. *-Statement.) its g lnn t”; m ateria l between the finc-grain concepts. D iscrete

descrip tion .ofeach sm aller plan exist in the files included by the m acros. T he conten ts

of these files (i.e. concept. 1-3) are presented below.

File. : Concept!

If-Stmt
abs-gen-desc empty
abs-exp-desc empty

Then

abs-gen-desc
empty

Assignment-Stmt
abs-gen-desc

uses : [idx],
defines : [?DistrVaI];

*-Stmt
abs-gen-desc

defines : [idx,distTested]
>

Q

ACL Query describing first sub concept

File : Concept2

If-Stmt
abs-gen-desc empty
abs-exp-desc

keywords : [contribution,TrP,DistrVal,idx]
Then
Assignment-Stmt

abs-gen-desc
uses : [contribution],
defines : [?p]

ACL Query describing second sub concept

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER EXPERIMENTAL REEl'LTR

F:h : Co:!Ct'pt;l

<D
As s ignment-Stmt

abs-gen-desc
defines : [mixTested];

Assignment-Stmt
abs-gen-desc

uses : [?p],
defines : [mix,Value]

<2

ACL Query describing code segments in lines 11 C 12

The reader must notice that the use of only one bind variable in an ACL query

does not make sense. However if wc combine the three queries we notice that there

arc no single bind variables.

Using the first concept only as input to our system we found 91 occurrences of it

in the code. The second sub-concept appears only 3 times in the Recognizer's code

where as the third concept occurs only twice. Using the generic query we managed

to successfully locate the concept in question in the Recognizer's code.

This method of hierarchical plan recognition can be adopted to describe and iden

tify large-grain concepts in the code when smaller sub-concepts have been identified.

5.4 Testing results presentation and analysis

We believe that the framework introduced in this work can be used for information

retrieval in general and not only in the design recovery process. The focus of our

testing was to estimate how effective a system using this new framework is. Our

secondary objective was to explore the process of creating a good concept description

using the query language we introduced. During result analysis we will report our

conclusions on the later subject.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER EXPERIMENTAL RESULTS 9-1

T he most widely used m easures for evaluating retrieval effectiveness are Recall and

Precision ^9 ;. Recall is defined .-is the p roportion of relevant m aterial:!.e . it m easure

how well the considered system retrieves all th e relevant com ponents. Precision is

defined ;ts the p roportion of retrieved m ateria l which is relevant: i.e.. it m easures how

well the system retrieves only the relevant, com ponents. Recall can also be in terp re ted

as the p robability that, a relevant com ponent will be retrieved, and precision as the

p robability th a t a retrieved component, will be relevant [o].

Recall and precision can be defined more formally as follows. Let C be the universe

of possible retrieved elements, for a design recovery system this would be the set of

all design plans - concepts in a system. For each query. C can be partitioned into

two disjoint sets, R. the set of relevant material, and R. the set of irrelevant material.

The information retrieval system will then retrieve a set of components c thar. can

also be partitioned into relevant and irrelevant material, r and r respectively. Recall

and precision are then defined as :

Recall = ^

Precision = ■—

It is obvious that recall and precision measurement require the ability to distin

guish between relevant and irrelevant material. Relevance judgements are always

debatable. In our case the most difficult task was to find all possible relevant ma

terial in our input; i.e. recognizing all occurrences of a concept in a program so we

could accurately measure recall. For the smaller subject systems this tedious task

was possible but for the larger ones we had to rely on the system’s modularity.

In order to produce meaningful diagrams we also had to quantify in some way the

expressiveness of each ACL query; to achieve this we adopted a simple formula to

calculate a weight for each query. The weight should be higher for precise queries and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESPITE

lower for ab strac t ones. As expected testing ind icates tha t using exact s ta tem en ts

instead o f d o n 't care or ab strac t s ta tem en ts ^ \g . the Itcratirc S tatement) to describe

a specific s ta tem en t yields higher precision results. Increased precision was observed

its well when non ab s trac t features tire used to describe the feat, art's of a code segm en t.

Use o f a b s trac t features, in the form of b ind variables, resu lts in lower precision for

well form ed queries. These observations led us to c rea te the following sim ple weight

formula:

Weight = ^Statem ents • Cost 1 -f- if Non .Abstract.Feat urvs ■ C ost'2+

HAbstract.Features ■ Cosf3 (I)

Where Costl = 3, Cost2 = 2 and Cost3 = 1.

For every subject system we located five concepts and for each concept we came

up with six to ten different descriptions. These descriptions were formed bv varying

the:

• number of abstract and non abstract features.

• number and type of statements in the query.

As a result these thirty concepts were expressed in two hundred and five different

queries. Queries describing the same concept mainly differ in weight which indicates

the degree of abstractness and expressiveness. The scries of diagrams that follows

focuses more on qualitative results rather than quantitative ones. It would be easy

to come up with several different ways of expressing a concept each one yielding a

different precision. However our major interest and objective was to capture the

general behavior of the system when certain parameters change. For this reason

diagrams are expressed across several different queries describing different concepts

for each subject system.

The first set of diagrams presented in figure 5.1 presents the relation between

precision and the average similarity measure reported for each query for a particular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER .1 EXPERIMEXTAL RESULTS 96

siib jiv i .system. As expected we observe' an analogy between these two quan tities.

As our queries become m ore precise the average sim ilarity m easure reported also

ineretises and viceversa. T he average sim ilarity m easure is calcu lated as the average

o f t he sim ilarity m easure calcu lated for each reported instance o f a concept described

by an ACL query. It is in teresting to notice th a t som e tim es precision rem ains

constant, when sm all differences in th e average sim ilarity m easure occur: the reason

for th is is th a t adding m ore features to ou r descrip tion a fte r a certain poin t does

no t have a significant, effect on precision bu t will m ost certa in ly change the average

sim ilarity m easure reported .

Additional conclusions regarding the quality and effectiveness of a query in ACL

can be drawn from our next diagram set (see figures 5.2.5.3). These diagrams show

the relation among the query precision, the number of retrieved concept instantiations

in a subject system and two main factors of the weight formula which also reflect the

expressiveness of the query, namely the number of abstract and non abstract features

specified in the ACL query.

These diagrams show some of the characteristics of the system. The general rule

is that the more abstract a query is made the bigger the number of retrieved concept

instantiations and the lower the precision would be. Using ACL for C there is a

number of ways an analyst can make a query more precise, namely the analyst can:

1. use specific statements instead of generic or don’t care statements to describe
a particular code segment,

2. utilize more non abstract features to describe properties of a code segment and
lastly

3. avoid the use of abstract features (i.e. bind variables) as much as possible.

The following points can be verified by examining the diagrams in figures 5.2 and

5.3. We see that increasing the number of abstract statements and non abstract

features results in less concept instantiations reported and better precision. On the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EX PE RIM EX TA L RESCLTS

Precision - Average Sim ilarity Measure
Diagrams

Figure 5.1: Precision - Average Similarity Measure Diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a I a p t e r e x p e r i m e s t a l r e s u l t s os

other hami m<T<-;t_sing the num ber of ab strac t features leads to an increiise of reported

concept, instan tia tions and lower precision.

A nother int.erest.ins dependency can be observed in the th ird set o f d iagram s

shown in figures 5.-1 and 5.5. T he way we defined the weight for an ACL query, a

g rea ter weight, corresponds to m ore precise thus less a b s tra c t queries (see form ula I).

This relation is shown in the d iagram s. For a well designed query increasing weight

should resu lt in g rea ter precision.

Finally our hist set of diagrams shows the existing relation between Recall and

Precision (figure 5.6). As expected these two quantities arc dependent and asym

metrical. The higher the Precision achieved by a query the lower the Recall will be.

Making a query more abstract means that we specify less features and use the query

language in a less restrictive way. Inevitably less logical constraints will result in

more irrelevant components retrieved and lower precision. Partial match allows to

virtually retrieve all the relevant info but usually this comes with a price in precision.

Summarizing our results we can say that:

• precision is highly correlated with the similarity measure. This result verifies
the correctness and effectiveness of the comparison algorithm used,

• the number of features (abstract and non abstract) is highly correlated with
the number of concepts retrieved,

• increasing the number of abstract statements, above a certain “threshold”, in
the query seems not to affect significantly the number of retrieved concepts,

• queries using only abstract features yield noisy results and consequently high
recall values,

• effective queries have to use both abstract and non abstract features in a bal
anced number and specific statements rather than abstract statements,

• when the precision drops the recall increases. This means that more abstract
queries that introduce more noisy results (lower precision) tend to capture more
instances of a concept in the system (higher recall). Moreover recall is rela
tively stable for most queries and that verifies the completeness of the features
selected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER EXPERIMESTAL RESELLS

Figure 5.2: Retrieved Concept Instantiations - Weight Factors Diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS 100

Figure 5.3: Retrieved Concept Instantiations - Weight Factors Diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS 101

Figure 5.4: Precision - Query Weight Diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS 10

Precision - W eight Diagrams

Figure 5.5: Precision - Query Weight Diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL RESULTS t 03

Precision - Recall Diagrams

^ 7
T O

7

Figure 5.6: Precision - Recall Diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5. EXPERIMEXTAL RESULTS 104

Finally new users ran easily improve the ir tool usage skills by tak ing advan tage of

the graphical interface and th e query ed ito r supplied. A screen d u m p of th e interface

is shown in figure 5.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ffl
H

'.C
ea

C
B

fi
S

W
.tp

S
M

S
r

B
H

E
D

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.7: The Graphical User Interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Conclusions

In previous chapters we presented the framework created and adopted for our system

as well as the experimental results we obtained using the system to locate concepts

in various C programs. This chapter discusses possible directions for future research

in order to improve the system and presents a summary of our conclusions.

6.1 Future work

There are two major directions for future improvement of both the framework and

the system we described. The first is enhancing the capabilities of the system and

the second is extending its scope. The following sections explore these directions.

System enhancement

Significant performance improvement is possible by introducing parallelism in the

algorithm. The nature of the algorithm makes it an ideal candidate for parallelization.

To be more specific what we suggest here is parallelizing the matching process after

the candidate starting points have been computed. Knowing how many distinct

cases have to be considered we can then “fork” as many processes to handle each

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6. COXCLUSIOXS 107

rase concurrently. This is of course a non trivial task. One must consider possible

overhead and space requirements due to massive copying of structures that is going

to occur. Further more we must estimate the effect of using parallelism on our

framework's complexity. Several techniques for parallel programming in C ++ are

being proposed and we arc currently going through the literature to estimate the

effort needed to accomplish this task.

Another possible improvement would be the implementation of several low level

feature comparison methods. The analyst would then have the opportunity to choose

the one he finds more suitable depending on the task the system has to accomplish.

In the current implementation feature comparison is done using exact string compar

ison and metric distance is calculated using the euclidean distance. One possibility

would be to calculate lexicographic distances [26] between code features and their de

scriptions in the ACL query. We could also use a different formula to compute metric

distances. The analyst would have the opportunity to choose the desired method of

feature comparison from a list of available methods in the graphical interface and

fine tune it by changing certain parameters or thresholds. For example in the current

version the user can adjust the threshold used to characterize a recognized statement

as a possible match as well as the threshold used to check the metrics distance of

two code segments. If we use lexicographic distances for feature comparison the user

should be able to specify the minimum number of characters a feature should have

so that the comparison is meaningful.

In the prototype, implemented for the REVENGE project, the Abstract Concept

Language (ACL) is more powerful. The analyst can specify the type of a variable

in the query and use logical operators to define the sequence of abstract statements.

Those features were not included in our version of the system mainly due to time

constraints. We estimate that existence of these features is also a possible enhance

ment. The existence of logical operators can be particularly useful in order to solve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6. COSCLUSIOXS 10S

somn interesting problems that, arise from the possible implementation diversity of a

concept. In every programming for example, the programmer can sometimes inter

change two statements that are not dependent on each other without changing the

functionality of the code segment containing these statements. To capture these cases

we could use the logical OR operator in ACL and describe our pattern as : .4,j|.4j .

this would result in the creation of two sequential models .41: .42 and .42; .41. The

one that maximizes the overall matching probability calculated would be chosen. In

our present implementation the only way to solve this problem is to use don't care

statements (i.e. the *-Statement or the -{-Statement).

A useful enhancement would be to graphically present our results. We are cur

rently exploring ways of representing graphically the AST and the matching results.

The AST will be represented as a simple n-ary tree. Nodes in the tree correspond

to nodes in the AST and thus to statements in the original code. The analyst will

have the ability to click on any node and get information about the node’s features.

Recognized concepts can then be presented to the analyst as highlighted areas (set of

nodes) in the tree. Implementing this GUI enhancement is an interesting task. A new

extension to Tcl/Tk exists that allows the display of dynamically created trees. We

estimate that presenting the whole AST can be time consuming, however it would be

possible for the analyst to choose between displaying the whole AST, just the parts

of the AST that contain recognized results or only some preselected parts of it.

The design presented in chapter four is the result of several iterations over our

initial design ideas. Introducing new features to our system will inevitably lead to

further evolvement of the design.

System Extension

An important step toward the evolution of the system design would also be the use of

the framework for a new target language. Possible target languages can be HTML,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6. CO.XCLVSIO.XS 109

Pascal or sim ply “struc tu red" tex t. At. the m om ent we find H TM L and “struc tu red"

text, th e m ost in teresting cand ida tes m ainly because using them would help us to

fu rth e r evaluate the system from the inform ation retrieval po in t of view.

Extending the tool with a new target language is a three step process. First, we

need to create a domain model for the new language able to capture the language's

basic constructs and their main features. For HTML pages, paragraphs, sentences,

applets and images can be considered basic constructs. Each basic construct has

particular features and also shares some common features with other classes. Links

and references, maps or background and foreground information can be considered

features of an HTML document. The next step is the creation of a parser for the

language. This parser should produce an intermediate representation of the “source

code” in the form of an AST. Nodes of the AST would be objects of the classes spec

ified in the domain model of the language. Finally we need to implement meaningful

feature comparison functions for the language. By plugging the newly created ele

ments to the existing framework we can then use our main code segment localization

algorithm to locate occurrence of a “code” segment in the input.

In terms of effort needed to accomplish these steps we have been able to confirm

that the creation of the domain model is the most time consuming and challenging

step. For most programming languages publically available parsers exist. We found

particularly useful to have such a parser in our initial resources. Going through the

parser we can factorize entities and create primary abstractions that can subsequently

drive the creation of the domain model. We already have a parser for “structured”

text, which is plain text with some simple tags to indicate end of paragraphs or pages.

HTML parsers are available and are also considered at the moment as possible starting

points.

Finally it would be useful to incorporate in the system a small knowledge base

where we could store the recognized concepts and create small libraries of plans for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6. COSCLUS 10 S'S 110

each subject system we examine. The global repository, currently used as a source for

our input, is a possible candidate. Using the domain model of the target language we

can form s-expressions describing a concept, and store them in th° global repository.

Using the global repository will permit the sharing of concept descriptions among the

participating tools in the cooperative environment.

6.2 Summary of conclusions

The purpose of the work reported in this document was the creation and use of

a generalized framework for information retrieval on large spaces containing struc

tured data. The particular implementation is applied to the program understanding

domain.

The framework introduced was used to create a code segment localizer which can

be used for concept localization in C programs. In the heart of this framework is an

algorithm that performs information retrieval based on complete or partial matching

of structured features. Concept detection and localization is a crucial part of the

design recovery process which, in turn, constitutes a vital task of the maintenance

process. The resulting code segment localizer can be part of a larger cooperative en

vironment of CASE tools created for the REVENGE project. The main components

of the framework are:

• a flexible and simplified domain model of the target language,

• parsing facilities for conversion to an intermediate representation (AST) of both
the “source code” and the query describing the concept and

• a comparison engine implementing the main localization algorithm using the
Viterbi dynamic programming algorithm and Markov Models.

An object oriented approach, and programming language (namely C ++), was

chosen for the implementation of the framework in order to achieve greater modu

larity, extensibility and ease of maintenance. After several iterations of introducing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6. CO.XCLCSIO.XS 111

enhancements to the system allowed us to conclude that extensibility ami maintain

ability were achieved.

Extensive testing proved the capabilities of our framework anil provided satisfac

tory results for a large range of subject systems and concepts.

We strongly believe that the generic framework presented in this report, can be

used to perform information retrieval in a variety of fields as long as informat ion

in the search space presents some structure and is described using formal, structure

oriented patterns of features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

The Abstract Concept Language
grammar

In this appendix we present the grammar of the Abstract Query Language we used
for C programs in Backus Normal Form. Reserved words of the language appear in
bold (a complete table for reserved words appear at the end), C-like syntax is used

A T SIG N <stmt_states> A T SIG N
/* empty */
<stmt_state> <stmt_states>
SEM IC O LO N <stmt_descr>
<stmt_descr>
<if_stmt>
<include_plan>
<iter_stmt>
<while_stmt>
<dojstm t>
<for_stmt>
<ret_stmt>
<gotojstmt>
<cont_stmt>
<break_stmt>
<switch_stmt>
<label_stmt>
<assignjstmt>
<fnccall.stmt>
<block_stmt>

112

for comments.

<query>
<stmt_states>

<stmt_state>

<stmt_descr>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPEXDIX A. THE A B S T R A C T C()XCEPT LA SG I 'ACE GRAM M AR 113

< includc_p lan>

<itcrj>tmt>
< \vh ile .stm t,>
<do_stmt>
<for_stmt>

<ret_stmt>
<goto_stmt>
<cont_stmt>
<break_stmt>
<s\vitch.stmt>
<label-stmt>
<assign_stmt>
<foccall_stmt>
<block_stmt>
<zero_or_more.stmt>
<one.orjnorejstm t>
<function_def>
<exprjstm t>
<gen_descr>

<gen_pattem_descr>
<cond_descr>

<pattem_descr>
<pattern_descr 1 >

<features_descr>
<uses_descr>

<defines_descr>

<zm)_or_morc-stmt >
<one.or_inoriv.stmi >
< function _dt'f>
<e.\pr_stmt>
SO U R C E <STR1NG>
IFST M T <gen.descr> <cotuLdescr> T H E N <stmt.desor>

ELSE <stmt_doscr>
IFST M T <gen.descr> <coiuLdoscr> T H E N <stmt.doscr>
IT E R ST M T <gcn_dt'scr> <coiuLdoscr> <stmt_desor>
W H ILE STM T <gen.descr> <cond.doscr> <stmt.descr>
D O ST M T <gen.descr> <cond.dcscr> <stmt.d«*cr>
FO R ST M T <gen_descr> L PA R E N < pat tern-doscr >
SEM ICO LO N <pattern_dcscr> SEM ICO LO N < pattern .descr>
R P A R E N <stmt-descr>

R E T ST M T <gen_descr>
G O T O ST M T <gen.descr>
C O N T ST M T
B R E A K ST M T
SW IT C H ST M T <gen_descr> <cond_descr> <stmt_descr>
LA BE L ST M T <gen.descr>
A SSIG N ST M T <gen_descr>
FN C C A L L ST M T ID E N T IF IE R <gen.descr>
L C B R A C K E T <gen_descr> <stmt_states> R C B R A C K E T
Z E R O M O R E ST M T <gen.descr>
O N E M O R E S T M T <gen.descr>
F U N C T IO N ID E N T IF IE R <gen_descr> block^tmt
E X P R S T M T <gen_descr> block_stmt
L P A R E N <gen_pattem_descr> R P A R E N

| <gen_pattem.descr>
: A B SG E N D E S C R <pattern_descr>l
: L P A R E N <pattem .descr> R P A R E N
| <pattem_descr>
: A B S E X P R D E S C R <pattern_descr> 1
: E M P T Y
j <features.descr>
: <uses_descr> <defines_descr> < keywords.descr > <metrics.descr>
:/* empty * /
I U SES L B R A C K E T <identifier_seq> R B R A C K E T
j USES L B R A C K E T <identifier_seq> R B R A C K E T C O M M A
:/* empty * /
| D E F IN E S L B R A C K E T <identifier.seq> R B R A C K E T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX .4. THE A B S T R A C T CONCEPT LANGUAGE G RA M M A R 114

< kcvwords.dcscr >

<identifier_seq>
<identifier_seql>

< Float >

| D E FIN E S LB R A C K E T <identificr_scq> R B R A C K E T
CO M M A
:/* empty *f
| K EY W O R D S LB R A C K E T <identifier_seq> R B R A C K E T
j K EY W O R D S LB R A C K E T <identifier_seq> R B R A C K E T

CO M M A
<metrics.descr> :/* empty */

| M E T R IC S L B R A C K E T <Float> CO M M A <FIoat>
CO M M A <FIoat> C O M M A <Float> C O M M A <FIoat>
R B R A C K E T

: <identifier_seql>
: <identifier^eq2> ID E N T IF IE R
| <identifierjseq2> Q U E STIO N ID E N T IF IE R

<identifier_seq2> : /* empty */
<identifier_seq2> ID E N T IF IE R CO M M A
<identifier_seq2> Q U E STIO N ID E N T IF IE R C O M M A
FLOAT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A. THE A B S T R A C T CONCEPT LANGUAGE GRAM M AR

Reserved Word Symbol | Actual Reserved Word

ABSEXPRDESCR
abs-exp-desc
Abs-Exp-Dcsc
ABS-EXP-DESC

ABSGENDESCR
abs-gcn-dcsc
Abs-Gen-Desc
ABS-GEN-DESC

FUNCTION
Function-Dcf
function-dcf
FUN CTION-DEF

IFSTMT
if-stmt
If-Stmt
IF-STMT

THEN
then
Then
THEN

ELSE
else
Else
ELSE

ITERSTMT
iterative-stmt
Iterative-Stmt
ITERATIVE-STMT

WHILESTMT
while-stmt
While-Stmt
WHILE-STMT

DOSTMT
do-stmt
Do-Stmt
DO-STMT

FORSTMT
for-stmt
For-Stmt
FOR-STMT

RETSTMT
return-stmt
Retum-Stmt
RETURN-STMT

GOTOSTMT
goto-stmt
Goto-Stmt
GOTO-STMT

EXPRSTMT
expr-stmt
Expr-Stmt
EXPR-STMT

Table A.l: ACL’s Reserved Words [I]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX ,4. THE ABSTFL\CT CONCEPT LANGUAGE G RA M M A R

Reserved. Word Symbol Actual Reserved Word

CONTSTMT
continue
Continue
CONTINUE

BREAKSTMT
break
Break
BREAK

SWITCHSTMT
switch-stmt
Switch-Stmt
SWITCH-STMT

LABELSTMT
Iabelled-Stmt
Labelled-Stmt
LABELLED-STMT

ASSIGNSTMT
assignment-stmt
Assignment-Stmt
ASSIGNMENT-STMT

FNCCALLSTMT
function-call
Function-Call
FUNCTION-CALL

ZEROMORESTMT
*-stmt
*-Stmt
*-STMT

ONEMORESTMT
H—stmt
+-Stmt
+-STMT

EMPTY
empty
Empty
EMPTY

KEYWORDS
keywords :
Keywords :
KEYWORDS :

DEFINES
defines :
Defines :
DEFINES :

USES
uses :
Uses :
USES:

Table A.2: ACL’s Reserved Words [II]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A. THE A B S T R A C T CONCEPT LANGUAGE GRAMMAR

Reserved Word Symbol Actual Reserved Word

METRICS
metrics :
Metrics :
METRICS :

SOURCE
source :
Source :
SOURCE:

LBRACKET I
RBRACKET 1
RBRACKET (
RPAREN)
LCBRACKET {
RCBRACKET }
ATSIGN @
COMMA 1
SEMICOLON
COLON I
QUESTION 9

Table A.3: ACL’s Reserved Words [III]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix B

Examples of concepts

Subject System : Twentyone

Concept description
For each player check if he/she placed a bet and if so then deal a new card

update the necessary variables.

<0

Iterative-Stmt
(abs-gen-desc empty)
(abs-exp-desc

keywords : [?player])
{
abs-gen-desc empty

+-Stmt
abs-gen-desc

•uses : [?player] ,
defines : [?card];

+-Stmt
abs-gen-desc

empty;
Assignment-Stmt

abs-gen-desc
uses : [?card];

+-Stmt
abs-gen-desc empty

>

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. EXAMPLES OF CONCEPTS

Example of reported concept instantiation

fo r (player = 0 ; player < num_players ; ++player)
{ card = players [player] . bet ? deal_card

(void) p r in tf ("\t7.c" , card) ;
players [player] . cards [players [player] . num_cards++] =

card ;
players [player] - cards [players [player] . num_cards] «* *\0’
players [player] . busted = 0 ;
players [player] . split = 0 ;

}

Subject System : List

Concept description
Check if memory allocation for an clement has failed and initialize element's fields.

If-Stmt
abs-gen-desc empty
abs-exp-desc

keywords : [elem]
Then

abs-gen-desc
empty

■“- S tm t
abs-gen-desc

empty
>;

*-Stmt
abs-gen-desc

uses : [elem]

Example o f reported concept instantiation

if (elem =» NULL)

fprintf(stderr,"elementcreate: malloc failed, out of memory???\n");
return NULL;

>

elem->nert ■ NULL;
elem->info “ i;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. EXAMPLES OF CONCEPTS 120

Subject System : Recognizer

Concept description
Part of the transition probability calculation. For each active transition check if

probability is already calculated if not calculate it; then check if this newly
calculated probability is bigger than the max probability so far and if so update the

current maximum. Finally perform some simple initializations.

®
Iterative-Stmt

(abs-gen-desc
uses : [?TrP],
defines : [?DistrVal])

(abs-exp-desc
empty)

{
abs-gen-desc

empty
If-Stmt

abs-gen-desc empty
abs-exp-desc empty

Then

abs-gen-desc
empty

Assignment-Stmt
abs-gen-desc

defines : [?DistrVal];
•-Stmt

abs-gen-desc
empty

>;
If-Stmt

abs-gen-desc empty
abs-exp-desc empty

Then
As signment-Stmt

abs-gen-desc
empty;

•-Stmt
abs-gen-desc

uses : [?TrP]
>

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. EXAMPLES OF CONCEPTS

Example of reported concept, instantiation

if C!(distTested[idx = TrP->DistrIdx])) {
DistrVal[idx] = EvalDistrC&DistrList[idx],obs);
distTested[idx] * TRUE;

>
if(p<(contribution=TrP->Prob+DistrVal[idx]))

p = contribution;
TrP++;
> while(++i < *nextMix);
♦mixTested = TRUE;
mix->Value = p;

Concept description
Check the energy level and if is less than the current minimum update the

minimum; also if its less than a certain filter value replace the current threshold
with this filter value.

Subject System : Feature Extractor

Q
Assignment-Stmt

abs-gen-desc
uses : [?enertmp];

If-Stmt
abs-gen-desc empty
abs-exp-desc empty

Then
Assignment-Stmt

abs-gen-desc
defines : [?enertmp];

If-Stmt
abs-gen-desc empty
abs-exp-desc

empty

*-Stmt
abs-gen-desc

empty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. EXAMPLES OF CONCEPTS 122

>
0

Example of reported, concept instantiation

enertmp /■ MelWeightfj];
if (enertmp < min_energy) enertmp * min_energy;
if (enertmp < SilFiltfj]) ■[

fprintf(stderr,"REPLACING (1) */.f with threshold %f\n",enertmp,SilFilt[j])
FiltEnergyfj] = SilFiltfj];

>

Subject System : CLIPS

Concept description
Check the value of a pointer and if it is NULL then adjust the menu and code

variables.

If-Stmt
abs-gen-desc empty
abs-exp-desc

keywords : [eptr]
Then

abs-gen-desc
empty

■•-Stmt
abs-gen-desc

empty
If-Stmt

abs-gen-desc empty
abs-exp-desc

keywords : [lptr]
Then
{
abs-gen-desc

empty
♦-Stmt

abs-gen-desc
uses : Clptr]

>;

♦-Stmt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. EXAMPLES OF CONCEPTS

abs-gen-desc
empty

>

Example of reported, concept instantiation

if (eptr == NULL)

♦code = N0_T0PIC;
if (lptr->curr_menu != NULL)

■C
♦menu = lptr->curr_menu->name;
return(lptr->curr_menu->offset);

>
return(-l);

>

Subject System : Tcsh

Concept description
Part of the prompt printing code.

Assignment-Stmt
abs-gen-desc

empty;
Iterative-Stmt

(abs-gen-desc
empty)

(abs-erp-desc
keywords : [vdp,wordJ)

abs-gen-desc
empty

♦-Stmt
abs-gen-desc

empty
Assignment-Stmt

abs-gen-desc
uses : [wdp,hp],
defines : [new.prev.nert];

♦-Stmt
abs-gen-desc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B. EXAMPLES OF CONCEPTS

empty;
Assignment-Stmt

abs-gen-desc
defines : [vdp, next];

•-Stmt
abs-gen-desc

empty
>;
Assignment-Stmt

abs-gen-desc
uses : [vdp],
defines : [bp,next]

Example of reported concept instantiation

vdp “ hp;
do {

register struct vordent *nev;

new ■ (struct vordent *) xmalloc((size_t) sizeof(*vdp));
new->uord ■ 0;
nev->prev ■ vdp;
nev->next ” hp;
vdp->next ” nev;
vdp •» nev;
vdp->vord ■■ vordO;

} vhile (vdp->vord[0] !■ *\n’);
hp->prev ■ vdp;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

A recognition exam ple

A full blown recognition example is presented in the following paragraphs in order

to clarify the process presented in chapter 5. Consider the following code segment

description :

Q 1 < 5

Q2 Assignment-Stmt
Q3 abs-gen-desc
Q4 defines : [Features];
Q5 Xterative-Stmt
Q6 (abs-exp-desc
Q7 keywords : [Control])
Q8 {
Q9 *-Stmt
Q10 abs-gen-desc
Qll empty
Q12 Assignment-Stmt
Q13 abs-gen-desc
Q14 uses : [Features,CosTable,FiltEnergy]
Q15 >
Q16 ®

The above query is used to locate an assignment statement that defines a variable

called “Features”, followed by an iterative statement which uses the keyword-variable

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPEXDIX C. A RECOGXITIOX EXAMPLE 126

“Control” in its condition. The iterative statement should have a block in its body.

Inside the block there should be at least one statement which would be an assignment

that uses three variables; namely “Features'', “CosTable" and "FiltEnergy". The

assignment statement should be the last statement in the block and can be preceded

by zero or more other statements.

Given the query described, an APM is formed (see figure C.l). There are some

interesting issues in the creation of the APM; both the Iterative statement and the

Block statement arc composite objects so sub-APMs are created for each one of them,

as a result recognition will be possible through recursive calls of certain functions for

each APM.

0.16$ 0.165
FIRST.SENTINEL ASSIGNMENT rrERATIVE_STATEMENT LAST.SENT1NEL

RRST.SENTINEL BLOCK.STATEMENT LAST_SENT1NEL

'•STATEMENT ASSIGNMENTRRST.SENTINEL LAST.SENTINEL

Figure C.l: Resulting APM.

Locating candidate starting points is the initial step of the code segment local

ization algorithm. Possible starting points for the given query are all the assign

ments statements in the code. For every possible starting point a call to the per-

form-pattemjmatch function occurs.

We used this query on the Feature Extractor and one possible result was the

following piece of code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPEXDIX C. A RECOGXITIOS EXAMPLE

Cl Features[i + n].PM_mel [j] = 0.0; /* try here «/
C2 for (k = 0; k < Control.sa_nfilt; k++)
C3 {
C4 Features[i + n].PM_mel[j] += (CosTable[j)[k] * FiltEnergy[k]);
C5 >

We will use this piece of code to explain the localization algorithm. The localiza

tion process starts by considering the active state in the APM and the active code

in the source code AST (Tc). The first state in the APM, the Assigrmumt State

described in lines Q2 to Q4 in the query, will be compared with the first statement

in the AST; line Cl in the code. Initially we perform the three step check to ensure

that a comparison is possible. Statement type compatibility, metrics distance and

specific features are compared. Type compatibility is successful, metrics and specific

features are not checked as they are not specified in the query. A similarity measure

is subsequently computed using formula (6) introduced in chapter 4. Assuming that

the statement in the code (line C l) defines two variable names (Features and PM.mel)

then :

The value of v is one because only one feature is specified (i.e. variable names

defined). To calculate the final probability to be attached to the transition for the

First Sentinel to the Assignment Statement in the APM, the similarity measure calcu

lated is multiplied by the probability of statement type compatibility specified in the

SCM. Both statements are of the same simple type (Assignment) so this probability

is 1. Finally the product is multiplied by the maximum probability in the incoming

FcoAfp(5ci|AQ2)

-Pc o m p (5 c i |-4 q 2) — — y i
n = I

card(AbstractFeaturej%n fl Code Feature,^) _ 1
card(AbstractFeaturej%n U CodeFeature^^) 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C. A RECOGNITION EXAMPLE 12S

transitions of the previous state in the APM. The previous state in this case is the

First Sentinel so this probability is again 1. As a result the overall similarity measure

attached to the first transition in the APM is 0.5 . The formula just described is :

Pt = PcOMp{Sd\-^Qj) ' PsCM * PmIP (~)

Where Pt is the transition probability, P$cm is the static probability given by

the static model based on statement type criteria and Pm ip is the max incoming

probability attached in a transition to the previous state in the APM.

The next active state in the APM is the Iterative Statement state and the next

active state in the code’s AST corresponds to the For Statement in line C2. Type

compatibility, metric distance and specific feature checks are all successful so the

calculation of the similarity measure can proceed. The Iterative Statement is a com

posite statement and in order to calculate its total similarity measure we first calculate

the similarity measure of its body by calling recursively the perform-pattemjmatch

function.

The active states now are: the Block Statement state in the APM and the Block

Statement state in the AST. The three initial checks are again successful and the

Block Statement being a composite statement causes a second recursive call to the

performjpattemjmatch function in order to calculate the similarity measure for the

Block Statement

From the APM we see that possible active states, are now both the *JStatement

state and the Assignment Statement. The active code is the node in the Te AST

corresponding to the assignment in line C4. Applying the three step check for the

* Statem ent and then calculating the similarity measure yields a transition probability

equal to one. A transition probability equal to one is calculated for the second active

state (i.e. the Assignment Statement too assuming th a t the corresponding node in

the Tc AST uses only the variables named “Features” , “CosTable” , and “FiltEnergy” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C. A RECOGNITION EXAMPLE 129

The active states in the APM for the next localization step are:

1. the * .Statement state (previous active state : * .Statement state).

2. the Assignment Statement (previous active state : *.Statemcnt state) and

3. the Last Sentinel state ((previous active state : Assignment Statement).

In the code there is no active state, as a result the first two possibilities (i.e.

the *JStatement and Assignment Statement fail the initial three step check. On the

contrary the last case Last Sentinel is successful and the maximum probability from

the incoming transitions to the previous active state (i.e. the Assignment Statement)

is assigned to the transition to the Last Sentinel state.

The similarity measure calculated for the body of the Block Statement is equal

to the transition probability to the Last Sentinel and is returned as the result of the

recursive call to the perform.pattemjmatch function. Using formula (7) for the Block

Statement we have :

Pt = P c o m p {$ c z \A q%) - Ps c m ' P m ip = 1 • 1 • 1 = 1

This transition probability is again assigned to the transition to the Last Sentinel

state in the second sub-APM and then passed back as the result of the recursive call

to the performjpattem-match function for the Iterative Statement Formula (7) for

the Iterative Statement now looks as follows :

P t = P c o m p {Sc2\A qs) * Ps c m • P m i p = 1 - 0.33 * 0.5 = 0.165

The probability given by the StatiC Model (SCM) is 0.33 (see figure 4.4) and the

previous maximum incoming transition probability is the one calculated for the first

Assignment Statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C. A RECOGNITION EXAM PLE 130

Assignment

Q I2-Q 14

Statement

Q9-Q11

Block Statement

Q8-Q15

0 3 3 _ _Iterative Statement

Q 5-Q I5

0 3 3

Assignm ent - - -

Q2-Q4 f /
! / > 3

 ►
Comparison

Step

Figure C.2: Comparison steps in the Viterbi algorithm for the example.

Finally the calculated probability is assigned to the final transition to the Last

Sentinel state of the “outermost” APM and a successful code segment localization is

reported. The described steps are shown in figure C.2, the dashed line presents the

reported path of recognition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Abbreviations

ACL Abstract Concept Language

A ST Abstract Syntax Tree

A P M Abstract Pattern Model

B N F Backus Normal Form

C LIPS C Language Integrated Production System

CSL Code Segment Localizer

G U I Graphical User Interface

H M M Hidden Markov Model

H T M L Hyper Text Markup Language

K LO C Kilo Lines Of Code

LO C Lines Of Code

M LO C Million Lines Of Code

N R C National Research Council of Canada

R E V E N G E RE Verse ENGineering Environment

SCM StatiC Model

S Q L /D S Structured Query Language/Data System

T M B Telos Message Bus

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

[1] J.B. Arseneau. Software Reengineering & Maintenance Tools.
http://www.crg.abdn.ac.uk/uscrs/brant/src/tools.html.

[2] K. Bennett. “Legacy systems : Coping with success” . IEEE Software, January
1995.

[3] T.J. Biggerstaff. “Design recover}' for maintenance and reuse” . IEEE Computer,
pages 36-44, July 1989.

[4] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster. “Program understanding
and the concept assignment problem”. Communications of the ACM, 37(5) :72-
82, May 1994.

[5] D.C. Bliar and S.D. Lee. “An evaluation of retieval effectiveness for a full-
tcxtdocument retrieval system”. Communications of the ACM, 28(3):289-299,
1985.

[6] G. Booch. Object-Oriented Analysis and design. The Benjamin/Cummings Pub
lishing Company ,Inc, 1994.

[7] B. Britcher and J. Craig. “Upgrading aging software using modern software
engineering practices” . In IEEE Conference on Software Maintenance, pages
162-170,1985.

[8] Intersolv Sales Brochure. Design Recovery for Excelerator. 1991.

[9] D.C. Brotsky. An Algorithm for Parsing Flow Graphs. Master’s thesis, MIT,
19S4.

[10] E. Bush. “The automatic restructuring of cobol” . In IEEE Conference on Soft
ware Maintenance, pages 35-41,1985.

[11] E. Buss and J. Henshaw. “A software reverse engineering experience” . In CAS-
CON, pages 55-73. IBM Canada Ltd, October 1991.

[12] CASE. “Reengineering and maintenance”. In CASE Outlook, 1989.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.crg.abdn.ac.uk/uscrs/brant/src/tools.html

www.manaraa.com

BIBLIOGRAPHY' 133

[13] E .J . Chikofsky and J.H . Cross II. "Reverse cnginnering and design recovery a
taxonom y". IEEE Software. pages 13-17. January 1990.

[14] N. Cooke and W . Schvaneveldt.. "Effects of com puter p rogram m ing experience
on netw ork represen tation o f a b s tra c t p rogram m ing concep ts". International
Journal of Man Machine Studies. 29:407-427, 19SS.

[15] T.A. C orbi. “P rogram undcrstand ingxhallenge for th e 1990's". IBM Systems
Journal 28(2):294-306, 19S9.

[16] J.R. Cordy and I.H. Carmichael. The TXL Programming Language. Syjilax and
Informal Semantics - Version 7. Technical Report Technical Report. 93-355,
Dept, of Computing and Information Science, Queen's University, 1993.

[17] Legasys Corporation. TXL Transforjnation System.
http://www.qucis.queens^.ca/homc/cordy/Icgasys.html.

[IS] B.K. Das. “A knowledge based approach to the analysis of code and program
design language”. In IEEE Conference on Software Maintenance, pages 290-296,
19S9.

[19] S. Davies. “The nature and development of programming plans”. International
Journal on Man Machine Studies, 32:461-481,1990.

[20] R. Dekker and F. Ververs. A design recovery prototype. Technical report, Delft
University of Technology, 1995.

[21] E. Buss et al. “Investigating reverse engineering technologies for the cas program
understanding project.”. IBM Systems Journal 33(3):477-499, 1994.

[22] F.W. Callics et al. “A knoweldge based system for software maintenance”. In
IEEE Conference on Software Maintenance, pages 319-324,1988.

[23] G. Arango et al. “Maintenace and porting of software by design recovery” . In
IEEE Conference on Software Maintenance, pages 42-49, 1985.

[24] J. Mylopoulos et al. “Telos: Representing knowledge about information sys
tems” . ACM Transactions on Information Systems, pages 325-362, October
1990.

[25] K. Kontogiannis et al. “The development of a partial design recovery system for
legacy systems”. In CASCON, pages 206-216, October 1993.

[26] K. Kontogiannis et al. “Pattern matching for clone and concept detection” . In
Journal o f Automated Software Engineering, pages 275-307,1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.qucis.queens%5e.ca/homc/cordy/Icgasys.html

www.manaraa.com

BIBLIOGRAPHY 134

[27] L.D. Landis et al. “Documentation in a software maintenance environment". In
IEEE Conference on Software Maintenance, pages 66-73. 19SS.

[28] P. Bcnedusi et al. “A reverse engineering methodology to reconstruct hierarchical
data flow diagrams for software maintenance''. In IEEE Conference on Software
Maintenance, pages 180-189, 19S9.

[29] P. Brown et al. “Class-based n-gram models of natural language". Journal of
Computational Linguistics, 18(4):467-479, December 1992.

[30] M.T. Harandi and J.Q. Ning. “Knowledge-based program analysis". IEEE Soft
ware, pages 74-81, January 1990.

[31] J. Hartman. Automatic Control Understanding for Natural Programs. PhD
thesis, University of Texas at Austin, May 1991.

[32] J. Hartman. “Understanding natural programs using proper decomposition".
Proceedings of the 13th International Conference of Software Engineering, May
1991.

[33] Imagix. Imagix 4D. http://www.teleport.com/ imagix/.

[34] J.H. Johnson. “Identifying redundancy in source code using fingerprints”. In
GASCON, pages 171-183. IBM Canada Ltd., November 1992.

[35] W.L. Johnson and E. Soloway. “Proust: Knowledge-based program understand
ing”. IEEE Transactions on Software Engineering, pages 267-275, March 1985.

[36] V. Karakostas. “The use of application domain knowledge for effective software
maintenance”. In IEEE Conference on Software Maintenance, pages 170-176,
1990.

[37] M.A. Ketabchi. “Object oriented intergrated software abalysis and mainte
nance” . In IEEE Conference on Software Maintenance, pages 60-62, 1990.

[38] K. Kontogiannis. “Toward program representation and program understanding
using process algebras”. In CAS CON, pages 299-317, November 1992.

[39] G.B. Kotik and L.Z. Markosian. Automating Software Analysis and Testing
Using a Program Transformation System. Technical report, Reasoning Systems
Inc., 1989.

[40] S. Letovsky. Plan Analysis of Programs. PhD thesis, Yale University Dept, of
Computer Science, December 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.teleport.com/

www.manaraa.com

BIBLIOGRAPHY 135

[41] K.J. Licberhcrr and l.M. Holland. "Tools for preventing software maintenance".
In IEEE Conference on Software Maintenance, pages 2 13, 19S9.

[42] R.C. Linger. “Software maintenance its engineering discipline”. In IEEE Con
ference on Software Maintenance, pages 292 -297, 19SS.

[43] Z.Y. Liu. M. Ballantvnc, and L. Seward. ,4n Assistant for Re-Engineering Legacy
Systems, http://www.spo.cds.com/cdsr/papers/iusstreeng.html.

[44] Lockheed. InVision.
http://www.lmsc.lockhccd.com/ncwsburcau/prcssreleitses/9522.html, 1996.

[45] J. Meekel and M. Viala. “Logiscope : A tool for maintenance” . In IEEE Con
ference on Software Maintenance, pages 32S-334, 19SS.

[46] H.A. Muller. Rigi - A Model for Software System Construction, Intcrgration and
Evolution Based on Module Interface Specifications. PhD thesis, Rice University,
August 19S6.

[47] W.M. Osborne and E.J. Chikofsky. “Fitting pieces to the maintenance puzzle”.
IEEE Software, pages 11-12, January 1990.

[48] D. Ourston. “Program recognition” . IEEE Expert, 4(4):36-49, Winter 19S9.

[49] M.C. Overstreet, J. Chen, and F. Byrum. “Program maintenance by safe trans
formations” . In IEEE Conference on Software Maintenance, pages 118-123,
1988.

[50] G. Parikh and N. Zvegintzov. The World of Software Maintenance, chapter 1,
pages 1-3. CSPress, Los Alamitos, 1983.

[51] S. Paul and A. Prakash. “Source code retrieval using programming patterns” .
In IEEE Transactions on Software Engineering, pages 227-242, 1994.

[52] J. Picone. “Continuous speech recognition using hidden markov models” . IEEE
ASSP MAGAZINE, pages 26-41, July 1990.

[53] W. Pree, D. Gangopadhyay, and A. Schappert. “Report on the workshop
framework-centered software development”. In Addendum to the Proceedings
OOPSLA ’95, pages 100-103, October 1995.

[54] R. Prieto-Diaz. “Domain anlysis an introduction” . Software Engineering Notes,
15(2):47-54, April 1990.

[55] A. Quiliri. “Reverse engineering of legacy systems: A path toward success” . In
International Conference on Software Engineering, pages 333-336,1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.spo.cds.com/cdsr/papers/iusstreeng.html
http://www.lmsc.lockhccd.com/ncwsburcau/prcssreleitses/9522.html

www.manaraa.com

BIBLIOGRAPHY 13G

[5G] A. Quiliei and J. Khan. "Extracting objects and operations from c programs". In
Workshop Notes, AI and Automated Program Understanding, AAAI'92. pages
93 97. 1992.

[57] S.P. Reiss. ‘“Pecan: Program development systems that support multiple views".
In ICSE-7. pages 324-333. 19S4.

[58] C . Rich and L.M. Wills. “Recognizing a program’s design : A graph-parsing
approach”. IEEE Software, pages 82-89, January' 1990.

[59] G. Salton and M.J. McGill. Introduction to Modem Information Retrieval.
McGraw-Hill, New York, 19S3.

[GO] D.B. Smith and P.W. Oman. “Software tools in context". IEEE Software, pages
15-19, May 1990.

[61] C. Smvthc, A. Colbrook, and A. Darlison. “Data abstraction in a software
reengineering reference model”. In IEEE Conference on Software Maintenance.
pages 2-11, 1990.

[62] H.M. Sneed. “Planning the reengineering of legacy systems”. IEEE Software,
pages 24-34, January' 1995.

[63] H.M. Sneed and G. Jandrasics. “Software recycling”. In IEEE Conference on
Software Maintenance, pages 82-90 ,19S7.

[64] AG Software. FULCRUM 2000. http://www.saguk.co.uk/web/year2000.html.

[65] E. Soloway and K. Ehrlich. “Empirical studies of programming knowledge” .
IEEE Transactions on Software Engineering, pages 595-609,1984.

[66] Logic Technologies. LogiCASE. http://www.provantage.com/DE_08063.HTM.

[67] Leverage Technologists. Tools, http://stout.levtech.com/home.html.

[6S] A.J. Viterbr. “Error bounds for convolutional code and asymptotic optimum
decoding algorithm” . IEEE Transactions on Information Theory, 13(2):336-
342,1967.

[69] W.B. Weide, D.W. Heym, and E.J. Hollingsworh E.J. “Reverse engineering of
legacy code exposed” . In International Conference on Software Engineering,
pages 327-331,1995.

[70] L.M. Wills. Automated Program Recognition. Master’s thesis, MIT, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.saguk.co.uk/web/year2000.html
http://www.provantage.com/DE_08063.HTM
http://stout.levtech.com/home.html

www.manaraa.com

BIBLIOGRAPHY 137

[71] L.M Wills. “Automated program recognition: Breaking out of the toy program
rut". In Workshop Notes, AI and Automated Propram Ihiderstandiiu). .-I .-1.11 9'd.
pages 129-133. 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

